440 research outputs found

    Dark ages reionization & galaxy formation simulation XII: Bubbles at dawn

    Full text link
    Direct detection of regions of ionized hydrogen (HII) has been suggested as a promising probe of cosmic reionization. Observing the redshifted 21-cm signal of hydrogen from the epoch of reionization (EoR) is a key scientific driver behind new-generation, low-frequency radio interferometers. We investigate the feasibility of combining low-frequency observations with the Square Kilometre Array and near infra-red survey data of the Wide-Field Infrared Survey Telescope to detect cosmic reionization by imaging HII bubbles surrounding massive galaxies during the cosmic dawn. While individual bubbles will be too small to be detected, we find that by stacking redshifted 21-cm spectra centred on known galaxies, it will be possible to directly detect the EoR at z912z \sim 9-12, and to place qualitative constraints on the evolution of the spin temperature of the intergalactic medium (IGM) at z9z \geq 9. In particular, given a detection of ionized bubbles using this technique, it is possible to determine if the IGM surrounding them is typically in absorption or emission. Determining the globally-averaged neutral fraction of the IGM using this method will prove more difficult due to degeneracy with the average size of HII regions.Comment: 14 pages, 11 figures, 2 tables, published in MNRAS. Updated to match published version. Additional results and comments added from previous version. All other results and conclusions remain unchange

    Polarised foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionisation

    Full text link
    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionisation history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio obsevations. This leakage leads to a portion of the complex linear polarisation signal finding its way into Stokes I, and inhibits the detection of the non-polarised cosmological signal from the epoch of reionisation. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionisation in the presence of contamination by polarised foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarisation leakage, and redshifted 21-cm emission by neutral hydrogen from the epoch of reionisation. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarisation leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionisation in its late stages (z ~ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionised cavities in the intergalactic medium.Comment: 22 pages including 11 figures. Minor revisions following referee's report. MNRAS, in pres

    Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Full text link
    We study dwarf galaxy formation at high redshift (z5z\ge5) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.Comment: 20 pages, 10 figures; Updated to match the published version. All results and conclusions remain unchange

    Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    Full text link
    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.Comment: 17 pages, 27 figures, accepted for publication in MNRAS, minor updates to align with final published versio

    Modification of the 21-cm power spectrum by X-rays during the epoch of reionisation

    Full text link
    We incorporate a contribution to reionization from X-rays within analytic and semi-numerical simulations of the 21-cm signal arising from neutral hydrogen during the epoch of reionization. We explore the impact that X-ray ionizations have on the power spectrum (PS) of 21-cm fluctuations by varying both the average X-ray MFP and the fractional contribution of X-rays to reionization. In general, prior to the epoch when the intergalactic medium is dominated by ionized regions (H {\sevensize II} regions), X-ray-induced ionization enhances fluctuations on spatial scales smaller than the X-ray MFP, provided that X-ray heating does not strongly supress galaxy formation. Conversely, at later times when \H2 regions dominate, small-scale fluctuations in the 21-cm signal are suppressed by X-ray ionization. Our modelling also shows that the modification of the 21-cm signal due to the presence of X-rays is sensitive to the relative scales of the X-ray MFP, and the characteristic size of \H2 regions. We therefore find that X-rays imprint an epoch and scale-dependent signature on the 21-cm PS, whose prominence depends on fractional X-ray contribution. The degree of X-ray heating of the IGM also determines the extent to which these features can be discerned. We show that the MWA will have sufficient sensitivity to detect this modification of the PS, so long as the X-ray photon MFP falls within the range of scales over which the array is most sensitive (0.1\sim0.1 Mpc1^{-1}). In cases in which this MFP takes a much smaller value, an array with larger collecting area would be required.Comment: 15 pages, 6 figures, Accepted for publication in MNRAS X-ray heating contribution now adde

    Dark-ages Reionization & Galaxy Formation Simulation VIII. Suppressed growth of dark matter halos during the Epoch of Reionization

    Full text link
    We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between 6{\sim}6 and 11{\sim}11), halos that host dwarf galaxies (109M\lesssim 10^{9} \mathrm{M_\odot}) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds 90%{\sim}90\% of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of 30%{\sim}30\% to 60\%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.Comment: 17 pages, 11 figures; Updated to match the published version. Two changes in Figures 1 and 3 in order to 1) correct bin sizes of the 10^8 and 10^8.5 Msol bins for NOSN_NOZCOOL_NoRe (was 0.5, should be 0.25); 2) include stellar mass in baryon fraction (was missed in Fig. 3). Quantitative description of Fig. 3 changed slightly in Section 2.2. All other results and conclusions remain unchange

    Dark-ages reionization and galaxy formation simulation--VII. The sizes of high-redshift galaxies

    Full text link
    We investigate high-redshift galaxy sizes using a semi-analytic model constructed for the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulation project. Our fiducial model, including strong feedback from supernovae and photoionization background, accurately reproduces the evolution of the stellar mass function and UV luminosity function. Using this model, we study the size--luminosity relation of galaxies and find that the effective radius scales with UV luminosity as ReL0.25R_\mathrm{e}\propto L^{0.25} at z5z{\sim}5--99. We show that recently discovered very luminous galaxies at z7z{\sim}7 (Bowler et al. 2016) and z11z{\sim}11 (Oesch et al. 2016) lie on our predicted size--luminosity relations. We find that a significant fraction of galaxies at z>8z>8 will not be resolved by JWST, but GMT will have the ability to resolve all galaxies in haloes above the atomic cooling limit. We show that our fiducial model successfully reproduces the redshift evolution of average galaxy sizes at z>5z>5. We also explore galaxy sizes in models without supernova feedback. The no-supernova feedback models produce galaxy sizes that are smaller than observations. We therefore confirm that supernova feedback plays an important role in determining the size--luminosity relation of galaxies and its redshift evolution during reionization.Comment: 10 pages, 4 figures, Accepted for publication in MNRA
    corecore