18 research outputs found
Auditory Feedback Control of Vocal Pitch during Sustained Vocalization: A Cross-Sectional Study of Adult Aging
Background: Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization. Methodology/Principal Findings: In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted 650 or 6100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults. Conclusion: These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretica
Acoustic trauma slows AMPAR-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function
Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure
The use of the LittlEARS Auditory Questionnaire in assessing children before and after cochlear implantation
Abstract Background The age of cochlear implant (CI) is a crucial factor that affects auditory skills and speech outcome in children after CI. Speech and auditory skills outcome using the Arabic form of the LittlEARS Auditory Questionnaire (LEAQ) on Arabic-speaking cochlear-implanted children is not sufficiently studied. Objective The aim of the present study was to assess. the use of the Arabic form of the LEAQ to determine the effect of age of CI on the outcome of auditory skills in children with CIs, to enhance better intervention protocols for children in need of CI and to achieve the best communicative skills for those children. Patients and Methods A total of 45 children with CI were classified into three groups according to their ages, and they were assessed using the Arabic version of LEAQ preoperatively as well as 6 and 18 months after mapping. Results Significant improvement in auditory skills and speech was reported in the three groups. The improvement was highly significant in the youngest group in comparison with the other two groups 6 and 18 months after mapping. In addition, speech and auditory skills were highly significant in each group after CI. Conclusion The age of the child at which CI is placed is a crucial factor in speech and auditory skills development. The earlier the age of CI, the better the result
Limited efficacy of adjuvant therapy with dexamethasone in preventing hearing loss due to experimental pneumococcal meningitis in the infant rat
Sensorineural hearing loss (SNHL) is the most common sequel of bacterial meningitis (BM) and is observed in up to 30% of survivors when the disease is caused by Streptococcus pneumoniae. BM is the single most important origin of acquired SNHL in childhood. Anti-inflammatory dexamethasone holds promises as potential adjuvant therapy to prevent SNHL associated with BM. However, in infant rats, pneumococcal meningitis (PM) increased auditory brainstem response (ABR) thresholds [mean difference = 54 decibels sound pressure level (dB SPL)], measured 3 wk after infection, irrespective to treatment with ceftriaxone plus dexamethasone or ceftriaxone plus saline (p 0.05). These results suggest that more efficient adjuvant therapies are needed to prevent SNHL associated with pediatric PM