682 research outputs found

    Kicked-rotor quantum resonances in position space: Application to situations of experimental interest

    Full text link
    In this work we apply the formalism developed in [M. Lepers \emph{et al}., Phys. Rev. A \textbf{77}, 043628 (2008)] to different initial conditions corresponding to systems usually met in real-life experiments, and calculate the observable quantities that can be used to characterize the dynamics of the system. The position space point of view allows highly intuitive pictures of the physics at play.Comment: accepted in Eur. Phys. J.

    Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    Full text link
    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is in principle possible by exciting transitions of the type (n,L)->(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n~L-1~35, first by using highly monochromatic, nanosecond laser beams of intensities 10^4-10^5 W/cm^2, and then by tuning the virtual intermediate state close (e.g., within 10-20 GHz) to the real state (n-1,L-1) to enhance the nonlinear transition probability. We expect that ac Stark shifts of a few MHz or more will become an important source of systematic error at fractional precisions of better than a few parts in 10^9. These shifts can in principle be minimized and even canceled by selecting an optimum combination of laser intensities and frequencies. We simulated the resonance profiles of some two-photon transitions in the regions n=30-40 of the \bar{p}^4He^+ and \bar{p} ^3He^+ isotopes to find the best conditions that would allow this.Comment: 18 pages 2 tables 12 figures, submitted to Phys. Rev.

    Nonprobabilistic teleportation of field state via cavity QED

    Full text link
    In this article we discuss a teleportation scheme of coherent states of cavity field. The experimental realization proposed makes use of cavity quatum electrodynamics involving the interaction of Rydberg atoms with micromaser and Ramsey cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport the state from a micromaser cavity to another. We show that, even if the correct atomic detection fails in the first trials, one can succeed in teleportating the cavity field state if the proper measurement occurs in a later atom

    The role of perceived source location in auditory stream segregation: separation affects sound organization, common fate does not

    Get PDF
    The human auditory system is capable of grouping sounds originating from different sound sources into coherent auditory streams, a process termed auditory stream segregation. Several cues can influence auditory stream segregation, but the full set of cues and the way in which they are integrated is still unknown. In the current study, we tested whether auditory motion can serve as a cue for segregating sequences of tones. Our hypothesis was that, following the principle of common fate, sounds emitted by sources moving together in space along similar trajectories will be more likely to be grouped into a single auditory stream, while sounds emitted by independently moving sources will more often be heard as two streams. Stimuli were derived from sound recordings in which the sound source motion was induced by walking humans. Although the results showed a clear effect of spatial separation, auditory motion had a negligible influence on stream segregation. Hence, auditory motion may not be used as a primitive cue in auditory stream segregation

    Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    Get PDF
    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes

    Sensitivity to the initial state of interacting ultracold bosons in disordered lattices

    Full text link
    We study the dynamics of a nonlinear one-dimensional disordered system obtained by coupling the Anderson model with the Gross-Pitaevskii equation. An analytical model provides us with a single quantity globally characterizing the localization of the system. This quantity obeys a scaling law with respect to the width of the initial state, which can be used to characterize the dynamics independently of the initial state.Comment: 10 pages, 12 figures, revtex4, submited to PR

    Classical chaos with Bose-Einstein condensates in tilted optical lattices

    Full text link
    A widely accepted definition of ``quantum chaos'' is ``the behavior of a quantum system whose \emph{classical} \emph{limit is chaotic}''. The dynamics of quantum-chaotic systems is nevertheless very different from that of their classical counterparts. A fundamental reason for that is the linearity of Schr{\"o}dinger equation. In this paper, we study the quantum dynamics of an ultra-cold quantum degenerate gas in a tilted optical lattice and show that it displays features very close to \emph{classical} chaos. We show that its phase space is organized according to the Kolmogorov-Arnold-Moser theorem.Comment: 4 pages, 3 figure
    corecore