23 research outputs found

    Sol‐Gel‐Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance

    Get PDF
    The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico‐ and (photo‐) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe₂O₄ thin films synthesized by a soft‐templating and dip‐coating approach. The A‐site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase‐pure and crack‐free on the meso‐ and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X‐ray‐based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity‐modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm⁻² in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications

    Wdr74 Is Required for Blastocyst Formation in the Mouse

    Get PDF
    Preimplantation is a dynamic developmental period during which a combination of maternal and zygotic factors program the early embryo resulting in lineage specification and implantation. A reverse genetic RNAi screen in mouse embryos identified the WD Repeat Domain 74 gene (Wdr74) as being required for these critical first steps of mammalian development. Knockdown of Wdr74 results in embryos that develop normally until the morula stage but fail to form blastocysts or properly specify the inner cell mass and trophectoderm. In Wdr74-deficient embryos, we find activated Trp53-dependent apoptosis as well as a global reduction of RNA polymerase I, II and III transcripts. In Wdr74-deficient embryos blocking Trp53 function rescues blastocyst formation and lineage differentiation. These results indicate that Wdr74 is required for RNA transcription, processing and/or stability during preimplantation development and is an essential gene in the mouse

    Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields

    Get PDF
    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid densities but long-term negative effects on biological pest control. Therefore conventional farmers should restrict insecticide applications to situations where thresholds for pest densities are reached

    Spag16, an Axonemal Central Apparatus Gene, Encodes a Male Germ Cell Nuclear Speckle Protein that Regulates SPAG16 mRNA Expression

    Get PDF
    Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the “9+2” axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene that encodes two protein products with different functions

    A mathematical model for glucose and insulin dynamics with direct connection to the β-cell cycle.

    No full text
    The term diabetes mellitus describes a group of metabolic diseases with persisting hyperglycemia as the main symptom. Interest is increasingly focused on the understanding and treatment of the disease because of its rising prevalence and the variety of severe complications. Recent experimental results indicate the relevance of the β-cell cycle for the development of diabetes mellitus. We investigate the dynamics of the interplay of glucose, insulin and the β-cell cycle with a mathematical model of ordinary differential equations. The basis of the system is built by three different models. To analyze the dynamics of insulin the work of Grodsky [1] introducing a packet hypothesis for insulin storage has been modified. This has been connected with the dynamics of glucose (Topp et al. [2]) and a model for the β-cell cycle based on Daukste et al. [3]. The advantage of the system consists in its explicit incorporation of the β-cell cycle with insulin directly enhancing the replication rate of the cells. In the presentation, the model and its development will be introduced as well as its capability of accounting for metabolic failures in the progression to diabetes

    Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro

    No full text
    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA

    Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro

    No full text
    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA
    corecore