105 research outputs found

    Evidence for ecosystem state shifts in Alaskan continuous permafrost peatlands in response to recent warming

    Get PDF
    Peatlands in continuous permafrost regions represent a globally-important store of organic carbon, the stability of which is thought to be at risk under future climatic warming. To better understand how these ecosystems may change in a warmer future, we use a palaeoenvironmental approach to reconstruct changes in two peatlands near Toolik Lake on Alaska's North Slope (TFS1 and TFS2). We present the first testate amoeba-based reconstructions from peatlands in continuous permafrost, which we use to infer changes in water-table depth and porewater electrical conductivity during the past two millennia. TFS1 likely initiated during a warm period between 0 and 300 CE. Throughout the late-Holocene, both peatlands were minerotrophic fens with low carbon accumulation rates (means of 18.4 and 14.2 g C m−2 yr−1 for cores TFS1 and TFS2 respectively). However, since the end of the Little Ice Age, both fens have undergone a rapid transition towards oligotrophic peatlands, with deeper water tables and increased carbon accumulation rates (means of 59.5 and 48.2 g C m−2 yr−1 for TFS1 and TFS2 respectively). We identify that recent warming has led to these two Alaskan rich fens to transition into poor fens, with greatly enhanced carbon accumulation rates. Our work demonstrates that some Arctic peatlands may become more productive with future regional warming, subsequently increasing their ability to sequester carbon

    Anthropocene history of rich fen acidification in W Poland: Causes and indicators of change

    Get PDF
    In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in its transition from rich fen to poor fen conditions. The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the Kazanie fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research M. patella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with the Anthropocene and not sustainable exploitation of nature.1. Introduction 2. Material and methods 2.1. State of art 2.1.1. Study site 2.1.2. Core retrieval and chronology 2.1.3. Plant macrofossils 2.2. Testate amoebae (TA) 2.3. Statistical analyses and visualization 3. Results and interpretation 3.1. Mire succession: plant macrofossils, testate amoebae, water table and conductivity 3.1.1. Phase I – rich fen; 91–35.5 cm; ca. 1767±45–1982±3 CE 3.1.2. Phase II – poor fen; 35.5–0 cm; ca. 1982±3–2017 CE 3.2. Non-Metric Multidimensional Scaling (NMDS) 4. Discussion 4.1. An abrupt rich to poor fen transition – causes of change 4.2. Quality of testate amoebae indicators of the rich-poor fen transformatio

    Anthropocene history of rich fen acidification in W Poland: causes and indicators of change

    Get PDF
    In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in its transition from rich fen to poor fen conditions. The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the Kazanie fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research M. patella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with the Anthropocene and not sustainable exploitation of nature.1. Introduction 2. Material and methods 2.1. State of art 2.1.1. Study site 2.1.2. Core retrieval and chronology 2.1.3. Plant macrofossils 2.2. Testate amoebae (TA) 2.3. Statistical analyses and visualization 3. Results and interpretation 3.1. Mire succession: plant macrofossils, testate amoebae, water table and conductivity 3.1.1. Phase I – rich fen; 91–35.5 cm; ca. 1767±45–1982±3 CE 3.1.2. Phase II – poor fen; 35.5–0 cm; ca. 1982±3–2017 CE 3.2. Non-Metric Multidimensional Scaling (NMDS) 4. Discussion 4.1. An abrupt rich to poor fen transition – causes of change 4.2. Quality of testate amoebae indicators of the rich-poor fen transformatio

    Rich fen development in CE Europe, resilience to climate change and human impact over the last ca. 3500 years

    Get PDF
    Here, for the first time in SE Poland, we document the long-term development of a rich fen and assess its sensitivity to climate change and human impacts over the last ca. 3500 years. Our results are based on a high-resolution, continuous plant macrofossil remains, mollusc and pollen record, complemented by geochemical, mineral magnetic and physical characterisation, and radiocarbon dating from Bagno Serebryskie rich fen located in SE Poland. Based on the palaeoecological data we distinguished five stages of wet habitat conditions: 5000–3300, 2800–2150, 1600–1100, 750–230, 150–10 cal yr BP and five dry periods at ca. 3300–2800, 2150–1600, 1100–750, 230–150, 10 to − 64 cal yr BP. The pollen and geochemistry records, particularly Pb, show that the first human activity in the study area occurred ca. 3200 cal yr BP and increased markedly from 500 cal yr BP affecting local plant development including the population size of Cladium mariscus. Our study has shown that despite human impact (drainage, fire), Bagno Serebryskie peatland has hosted rare, presently protected species, such as Cladium mariscus for hundreds of years. We conclude that, in common with ombrotrophic bogs, rich fen ecosystems can provide a reliable source of palaeoclimatic and palaeohydrological data. Our study also shows that a large peatland (376 ha) can be as sensitive a palaeohydrological archive as smaller mires

    Ecology of peatland testate amoebae in the Alaskan continuous permafrost zone

    Get PDF
    Arctic peatlands represent a major global carbon store, but rapid warming poses a threat to their long-term stability. Testate amoebae are sensitive hydrological indicators that offer insight into Holocene environmental change in peatlands. However, in contrast to temperate peatlands, there have only been a few studies into the ecology of testate amoebae and their efficacy as environmental indicators in permafrost peatlands. We present the first study of testate amoeba ecology from peatlands in the continuous permafrost zone, based on samples from across the Alaskan North Slope. Multivariate statistical analyses show that pore water electrical conductivity (EC), a proxy for nutrient status along the ombrotrophic-minerotrophic gradient, is the dominant control on testate amoeba distribution. Water-table depth (WTD) is also a significant control on testate amoeba distribution, but is secondary to EC. We present two new testate amoeba-based transfer functions to reconstruct both EC (TFEC) and WTD (TFWTD), the first for peatlands in the continuous permafrost zone. The transfer functions are based on Weighted Averaging Partial Least Squares (WAPLS) regression and were assessed using leave-one-out (LOO) cross-validation. We find that both transfer functions have good predictive power. TFWTD is the best performing model (R2JACK = 0.84, RMSEPJACK = 6.66 cm), but TFEC also performs well (R2JACK = 0.76, RMSEPJACK = 146 μS cm−1). Our findings are similar to those conducted in peatlands in discontinuous permafrost regions. The new transfer functions open the opportunity for reconstructing the Holocene dynamics of peatlands of the continuous permafrost zone in Alaska, which represent rapidly changing ecosystems

    Late Glacial and early Holocene development of an oxbow lake in Central Europe (Poland) based on plant macrofossil and geochemical data

    No full text
    Sediments from an oxbow lake located in the Prosna River valley (Poland) were analysed to investigate the developmental history of the wetland ecosystem and any response to abrupt climatic changes. High resolution plant macrofossil analysis and radiocarbon dating were undertaken on two cores, with lower resolution geochemical analysis conducted on one of these cores. We provide evidence of a palaeolake with a late Glacial origin (older than 12,500 years). Abundant fossil presence of macrophytes (e.g. multiple Potamogeton species) in the studied palaeomeander may indicate that the north–south orientation of the Prosna valley made it an important route for the spreading of aquatic plants during the late Glacial. Chara sp., Batrachium sp. and Potamogeton spp. were the pioneer plants that colonised cold water with a high Ca2+ content. Early Holocene warming trigged a decrease in water level at the oxbow lake and facilitated the expansion of thermophilous water plants, for example, Ceratophyllum demersum, Typha sp. and Lemna trisulca, which usually occur in shallow water. A decreasing water level resulted in the gradual isolation of the study site from the influence of groundwater, leading to acidification of the habitat and the development of a Sphagnum population, with S. contortum and S. teres as dominant species. The presence of S. contortum (the oldest occurrence in the European lowlands) and S. teres during the early Holocene may indicate that river valleys and the peatlands that developed in this region acted as an important habitats (and possibly refugia) for some minerotrophic Sphagnum species

    Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming

    No full text
    We use paleoecological techniques to investigate how Canadian High Arctic wetlands responded to a midtwentieth century increase in growing degree days. We observe an increase in wetness, moss diversity, and carbon accumulation in a polygon mire trough, likely related to ice wedge thaw. Contrastingly, the raised center of the polygon mire showed no clear response. Wet and dry indicator testate amoebae increased concomitantly in a valley fen, possibly relating to greater inundation from snowmelt followed by increasing evapotranspiration. This occurred alongside the appearance of generalist hummock mosses. A coastal fen underwent a shift from sedge to shrub dominance. The valley and coastal fens transitioned from minerogenic to organic‐rich wetlands prior to the growing degree days increase. A subsequent shift to moss dominance in the coastal fen may relate to intensive grazing from Arctic geese. Our findings highlight the complex response of Arctic wetlands to warming and have implications for understanding their future carbon sink potential

    A regime shift from erosion to carbon accumulation in a temperate northern peatland

    Get PDF
    1. Peatlands are globally important ecosystems but many are degraded and some are eroding. However, some degraded peatlands are undergoing apparently spontaneous recovery, with switches from erosion to renewed carbon accumulation – a type of ecological regime shift. 2. We used a palaeoecological approach to investigate and help understand such a switch in a blanket peatland in North Wales, UK. 3. Our data show: (i) a rapid accumulation of new peat after the switch from the eroding state, with between 5.2 and 10.6 kg m‐2 carbon accumulating since the beginning of the recovery which occurred between the late 1800s and early to mid 1900s CE, with an average carbon accumulation rate in the new peat between 46 and 121 g C m‐2 yr‐1; (ii) three main successional pathways in peat‐forming vegetation; and (iii) hydrological changes with an increase to moderately high water tables after the switch that promoted new carbon accumulation as well as protecting vulnerable old carbon. External factors, including changes in climate and industrial activity, can only partially explain our results. Following previous studies, we suggest that internal ecosystem processes offer a substantial part of the explanation and interpret the switch to renewed carbon accumulation as a bifurcation‐type tipping point involving changes in the physical form of the eroded landscape. 4. Synthesis: Our long‐term ecological data reveal a switch from a degraded peatland with active erosion and loss of carbon to a re‐vegetated, wetter peatland accumulating carbon. The switch can be interpreted as a bifurcation tipping point. We suggest that external factors such as climate and pollution levels are important for setting suitable boundary conditions for peatland recovery, but internal mechanisms can explain the change in peatland state. Our study is the first of its kind to apply tipping‐point theory to the internal mechanisms linked to peat erosion and recovery and may help improve understanding of the trajectories of other peatlands in a changing climate

    Widespread drying of European peatlands in recent centuries

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Climate warming and human impacts are thought to be causing peatlands to dry,potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental Europe to examine changes in peatland surface wetness during the last 2000 years. 60% of our study sites were drier during the period CE 1800-2000 than they have been for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 24% of sites were drier than they have been for 2000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary between regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.Natural Environment Research Council (NERC

    The Śnieżka peatland as a candidate for the Global Boundary Stratotype Section and Point for the Anthropocene series

    Get PDF
    The subalpine, atmospherically fed Śnieżka peatland, located in the Polish part of the Sudetes, is one of the nominated candidates for the GSSP of the Anthropocene. Data from two profiles, Sn1 (2012) and Sn0 (2020), from this site are critical for distinguishing the proposed epoch, while an additional core Sn2 is presented to support main evidence. The Sn0 archive contains a wide array of critical markers such as plutonium (Pu), radiocarbon (F14C), fly ash particles, Hg and stable C and N isotopes which are consistent with the previously well documented 210Pb/14C dated Sn1 profile, which provides a high-resolution and comprehensive database of trace elements and rare earth elements (REE), Pb isotopes, Pu, Cs, pollen and testate amoebae. The 1952 worldwide appearance of Pu, owing to its global synchronicity and repeatability between the cores, is proposed here as a primary marker of the Anthropocene, supported by the prominent upturn of selected chemostratigraphic and biostratigraphic indicators as well as the appearance of technofossils and artificial radionuclides
    corecore