1,080 research outputs found

    Analytic height correlation function of rough surfaces derived from light scattering

    Get PDF
    We derive an analytic expression for the height correlation function of a rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces, and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental procedure.Comment: 6 pages, 5 figures, 1 tabl

    The quality of life in boys with Duchenne muscular dystrophy

    Get PDF
    We conducted a study to evaluate the quality of life in boys with Duchenne muscular dystrophy aged 8–18 years, compared with that in matched healthy controls. A total of 85 boys with Duchenne muscular dystrophy aged 8–18 years and 136 age, sex and living place matched healthy controls were included in this study. Patients and one of their parents separately completed the 27-item Persian version of KIDSCREEN questionnaire (child and adolescent version and parent version). From the children's perspective, the quality of life in patients was found to be lower in two subclasses: “physical activities and health” (p < 0.001) and “friends” (p = 0.005). Parental estimation of their sick child's quality of life was significantly lower than children's own assessment in two subclasses: “physical activities and health” (p < 0.001) and “general mood and feelings” (p < 0.001). Our results indicate that boys with Duchenne muscular dystrophy have quite a satisfactory quality of life. A happier and more hopeful life can be promoted through increasing social support and improving the parental knowledge regarding their child's more positive life perspective. © 2016 Elsevier B.V

    Serum hyaluronate as a non-invasive marker of hepatic fibrosis and inflammation in HBeAg-negative chronic hepatitis B

    Get PDF
    Background: HBV infection is a serious global heath problem. It is crucial to monitor this disease more closely with a non-invasive marker in clinical trials. We aimed to evaluate the predictive value of serum hyaluronate for the presence of extensive liver fibrosis and inflammation. Methods: 28 healthy volunteers and 65 patients with HBeAg negative chronic hepatitis B were enrolled. Liver biopsies scored according to Ishak system. Association of serum hyaloronate with liver fibrosis and inflammation were assessed, and cut off points for serum hyaluronate levels were identified by receiver operating characteristics (ROC) curves and their values for prediction of fibrosis and inflammation were assessed. Results: In patients with CHB serum hyaluronate had the most significant correlation and predictive values for the liver fibrosis and inflammation comparing to the other variables. At the cut off point of 126.4 ngm/ml it could discriminate extensive fibrosis from milder ones with sensitivity of 90.9% and specificity of 98.1%. With the same value it could discriminate extensive inflammation from their milder counterparts with sensitivity of 63.6% and specificity of 92.6%. Conclusion: Serum hyaluronate was the best predictor of extensive liver fibrosis and inflammation and it could discriminate subgroups of patients with chronic hepatitis B. It could be used as a non-invasive test to monitor these patients more closely with developing anti viral agents in clinical trials

    A numerical solution for addressing the overturning phenomena of heritage assets

    Get PDF
    Historical heritage represent a crucial aspect for societies and therefore it should be preserved from natural disasters such as earthquake. Base isolation systems are widely used to mitigate the horizontal effects of strong ground motions on important buildings and bridges, but there are also interesting applications on statues. However, such systems are characterized by properties that are quite different from the ones that belong to traditional civil structures. For this reason, national and international regulations are not exhaustive and actual dynamics of the system should be studied through numerical and experimental methods. Starting from analytical formulations, the paper investigates the sliding and rocking motion in details, being the typical one of statues under seismic loads. The presented numerical model describes the problem and is an alternative to the analytical formulation to perform several analyses automatically. In addition, it allows running parametric analyses to assess the influence of various parameters, such as eccentricity, stiffness, mass, geometric ratios, etc. Future work is geared to validate the numerical model trough performing experimental tests on shaking table

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Seismic Damage Assessment of a Virtual Large Scale City Model

    Get PDF
    Recent social developments and economic transformation have changed the engineering design approach from building design level towards community design level (city, region, country). The latter approach involves modeling of interconnections between different systems (buildings, transportation, water network, etc.) rather than designing the buildings individually. Thus, new analysis tools are expected to be developed to simulate the complex response of a community subsequently to disasters. The need of such rational tools is the object of this research work. Two different numerical approaches to simulate the response of a large-scale built envi-ronment after a seismic scenario are explored by developing multipurpose numerical codes. A district of a vir-tual city is considered as a case study and the level of damage for built environment is estimated. This work could be the first step for further urban loss analysis, e.g. through agent-based models that could be updated online with the proposed simulation

    Smart cities to improve resilience of communities

    Get PDF
    This paper presents a new approach to predict the potential damage and physical impacts of an earthquake on the built environment. A new methodology to the urbanized systems and large-scale simulations within a seismic scenario is explored, by evaluating multipurpose codes for numerical simulation. A 3-D building shape of a standard virtual city is developed for evaluat-ing the seismic effects at increasing intensities. Four different building sectors that provide essential functions to a community, including housing, education, business, and public ser-vices are considered. Once the buildings are integrated into the city, parallel simulations are applied to compute the system functionality following a disruptive scenario. Tri-linear elasto-plastic backbone curve representative of global shear behavior of each building is estimated considering the dominant modal shapes and building irregularities. Monte Carlo Simulations (MCS) are applied to take into account the epistemic uncertainties associated with geometry and mechanical properties within the range of observations. For each set of buildings’ data, the nonlinear dynamic analysis is performed through SAP2000 Application Programming In-terface (API) in order to assess the dynamic response of the buildings in an organized and au-tomatic fashion. Accordingly, the city is mapped into different zones representative to the possibility of having different levels of damage (complete, extensive, moderate, and slight). This methodology supports decision-makers to explore how their community will respond to a disruptive event, to develop different strategies for monitoring and control the emergency in urbanized areas, and to plan better resilience-building and evacuation strategies

    Imaging stray magnetic field of individual ferromagnetic nanotubes

    Get PDF
    We use a scanning nanometer-scale superconducting quantum interference device to map the stray magnetic field produced by individual ferromagnetic nanotubes (FNTs) as a function of applied magnetic field. The images are taken as each FNT is led through magnetic reversal and are compared with micromagnetic simulations, which correspond to specific magnetization configurations. In magnetic fields applied perpendicular to the FNT long axis, their magnetization appears to reverse through vortex states, i.e.\ configurations with vortex end domains or -- in the case of a sufficiently short FNT -- with a single global vortex. Geometrical imperfections in the samples and the resulting distortion of idealized mangetization configurations influence the measured stray-field patterns.Comment: 14 pages, 4 figure
    • 

    corecore