43,947 research outputs found

    Meteoritic ablation and fusion spherules in Antarctic ice

    Get PDF
    In the course of two Antarctic expeditions in 1980/1981 and 1982/1983 approximately 4 metric tons of documented ice samples were collected from the Atka Bay Ice Shelf, Antarctica, and subsequently shipped for cosmic dust studies. After filtration of the melt water, approximately 700 Antarctic spherules (AAS) in the size range of 5 to 500 microns were handpicked from the filter residue under optical microscopes. For the chemical investigation of single dust grains the following techniques were applied: scanning electron microscopy (SEM), X-ray analysis (EDAX), instrumental neutron activation analysis (INAA), laser microprobe mass analysis (LAMMA), and accelerator mass spectroscopy (AMS). For more than 95% of the total mass the bulk and trace elements were determined in single grain analyses using EDAX, INAA, and LAMMA. The element pattern of the dust particles was compared with that of typical terrestrial material and meteoritic matter. The majority of the spherules exhibited elemental compositions compatible with meteoritic element patterns

    Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant

    Full text link
    We here present a high sensitivity gravity-gradiometer based on atom interferometry. In our apparatus, two clouds of laser-cooled rubidium atoms are launched in fountain configuration and interrogated by a Raman interferometry sequence to probe the gradient of gravity field. We recently implemented a high-flux atomic source and a newly designed Raman lasers system in the instrument set-up. We discuss the applications towards a precise determination of the Newtonian gravitational constant G. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement precision below the 100 ppm level

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G

    Get PDF
    We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant \textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the gravitational field induced by source masses. A discussion of projected accuracy for \textit{G} measurement using this new scheme shows that the results of the experiment will be significant to discriminate between previous inconsistent values.Comment: 9 pages,9 figures, Submitte
    corecore