668 research outputs found

    Transcriptome analysis of porcine M. semimembranosus divergent in intramuscular fat as a consequence of dietary protein restriction

    Get PDF
    peer-reviewedBackground: Intramuscular fat (IMF) content is positively correlated with aspects of pork palatability, including flavour, juiciness and overall acceptability. The ratio of energy to protein in the finishing diet of growing pigs can impact on IMF content with consequences for pork quality. The objective of this study was to compare gene expression profiles of Musculus semimembranosus (SM) of animals divergent for IMF as a consequence of protein dietary restriction in an isocaloric diet. The animal model was derived through the imposition of low or high protein diets during the finisher stage in Duroc gilts. RNA was extracted from post mortem SM tissue, processed and hybridised to Affymetrix porcine GeneChip® arrays. Results: IMF content of SM muscle was increased on the low protein diet (3.60 ± 0.38% versus 1.92 ± 0.35%). Backfat depth was also greater in animals on the low protein diet, and average daily gain and feed conversion ratio were lower, but muscle depth, protein content and moisture content were not affected. A total of 542 annotated genes were differentially expressed (DE) between animals on low and high protein diets, with 351 down-regulated and 191 up-regulated on the low protein diet. Transcript differences were validated for a subset of DE genes by qPCR. Alterations in functions related to cell cycle, muscle growth, extracellular matrix organisation, collagen development, lipogenesis and lipolysis, were observed. Expression of adipokines including LEP, TNFα and HIF1α were increased and the hypoxic stress response was induced. Many of the identified transcriptomic responses have also been observed in genetic and fetal programming models of differential IMF accumulation, indicating they may be robust biological indicators of IMF content. Conclusion: An extensive perturbation of overall energy metabolism in muscle occurs in response to protein restriction. A low protein diet can modulate IMF content of the SM by altering gene pathways involved in lipid biosynthesis and degradation; however this nutritional challenge negatively impacts protein synthesis pathways, with potential consequences for growth.Department of Agriculture, Food and the Marine, Ireland - Food Institutional Research Measur

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio

    Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

    Get PDF
    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance

    Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods

    Get PDF
    We present a hierarchical Bayesian method for atmospheric trace gas inversions. This method is used to estimate emissions of trace gases as well as "hyper-parameters" that characterize the probability density functions (PDFs) of the a priori emissions and model-measurement covariances. By exploring the space of "uncertainties in uncertainties", we show that the hierarchical method results in a more complete estimation of emissions and their uncertainties than traditional Bayesian inversions, which rely heavily on expert judgment. We present an analysis that shows the effect of including hyper-parameters, which are themselves informed by the data, and show that this method can serve to reduce the effect of errors in assumptions made about the a priori emissions and model-measurement uncertainties. We then apply this method to the estimation of sulfur hexafluoride (SF6) emissions over 2012 for the regions surrounding four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that improper accounting of model representation uncertainties, in particular, can lead to the derivation of emissions and associated uncertainties that are unrealistic and show that those derived using the hierarchical method are likely to be more representative of the true uncertainties in the system. We demonstrate through this SF6 case study that this method is less sensitive to outliers in the data and to subjective assumptions about a priori emissions and model-measurement uncertainties than traditional methods

    Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006

    Get PDF
    The growth in atmospheric methane (CH4) concentrations over the past two decades has shown large variability on a timescale of several years. Prior to 1999 the globally averaged CH4 concentration was increasing at a rate of 6.0 ppb/yr, but during a stagnation period from 1999 to 2006 this growth rate slowed to 0.6 ppb/yr. From 2007 to 2009 the growth rate again increased to 4.9 ppb/yr. These changes in growth rate are usually ascribed to variations in CH4 emissions. We have used a 3-D global chemical transport model, driven by meteorological reanalyses and variations in global mean hydroxyl (OH) concentrations derived from CH3CCl3 observations from two independent networks, to investigate these CH4 growth variations. The model shows that between 1999 and 2006, changes in the CH4 atmospheric loss contributed significantly to the suppression in global CH4 concentrations relative to the pre-1999 trend. The largest factor in this is relatively small variations in global mean OH on a timescale of a few years, with minor contributions of atmospheric transport of CH4 to its sink region and of atmospheric temperature. Although changes in emissions may be important during the stagnation period, these results imply a smaller variation is required to explain the observed CH4 trends. The contribution of OH variations to the renewed CH4 growth after 2007 cannot be determined with data currently available
    corecore