8,729 research outputs found

    Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Get PDF
    The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes &ndash; in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range

    Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED

    Get PDF
    We propose a scheme for the quantum non-demolition (QND) measurement of Fock states of a nanomechanical resonator via feedback control of a coupled circuit QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and microwave cavity. The CPB is read-out via homodyne detection on the cavity and feedback control is used to effect a non-dissipative measurement of the CPB. This realizes an indirect QND measurement of the nanoresonator via a second-order coupling of the CPB to the nanoresonator number operator. The phonon number of the Fock state may be determined by integrating the stochastic master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure

    Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae.

    No full text
    Combination therapy that includes artemisinin derivatives cures most falciparum malaria infections. Lowering transmission by reducing gametocyte infectivity would be an additional benefit. To examine the effect of such therapy on transmission, Gambian children with Plasmodium falciparum malaria were treated with standard regimens of chloroquine or pyrimethamine-sulfadoxine alone or in combination with 1 or 3 doses of artesunate. The infectivity to mosquitoes of gametocytes in peripheral blood was determined 4 or 7 days after treatment. Infection of mosquitoes was observed in all treatment groups and was positively associated with gametocyte density. The probability of transmission was lowest in those who received pyrimethamine-sulfadoxine and 3 doses of artesunate, and it was 8-fold higher in the group that received pyrimethamine-sulfadoxine alone. Artesunate reduced posttreatment infectivity dramatically but did not abolish it completely. The study raises questions about any policy to use pyrimethamine-sulfadoxine alone as the first-line treatment for malaria

    Mixed state discrimination using optimal control

    Get PDF
    We present theory and experiment for the task of discriminating two nonorthogonal states, given multiple copies. We implement several local measurement schemes, on both pure states and states mixed by depolarizing noise. We find that schemes which are optimal (or have optimal scaling) without noise perform worse with noise than simply repeating the optimal single-copy measurement. Applying optimal control theory, we derive the globally optimal local measurement strategy, which outperforms all other local schemes, and experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures supplementary materia

    Detecting multipartite entanglement

    Get PDF
    We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.Comment: 9 pages, REVTE

    Multiple-copy state discrimination: Thinking globally, acting locally

    Full text link
    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies NN, and in the asymptotic limit as NN \rightarrow \infty. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here, adaptive measurements are those for which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite NN) and scaling of this error in the asymptotic limit. In the asymptotic limit, adaptive schemes have no advantage over the optimal fixed local scheme, and except for states with less than 2% mixture, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme. For finite NN, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme, for any degree of mixture.Comment: 11 pages, 14 figure

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain
    corecore