22 research outputs found

    Novel intravesical bacterial immunotherapy induces rejection of BCG-unresponsive established bladder tumors

    Get PDF
    Background Intravesical BCG is the gold-standard therapy for non-muscle invasive bladder cancer (NMIBC); however, it still fails in a significant proportion of patients, so improved treatment options are urgently needed. Methods Here, we compared BCG antitumoral efficacy with another live attenuated mycobacteria, MTBVAC, in an orthotopic mouse model of bladder cancer (BC). We aimed to identify both bacterial and host immunological factors to understand the antitumoral mechanisms behind effective bacterial immunotherapy for BC. Results We found that the expression of the BCG-absent proteins ESAT6/CFP10 by MTBVAC was determinant in mediating bladder colonization by the bacteria, which correlated with augmented antitumoral efficacy. We further analyzed the mechanism of action of bacterial immunotherapy and found that it critically relied on the adaptive cytotoxic response. MTBVAC enhanced both tumor antigen-specific CD4 + and CD8 + T-cell responses, in a process dependent on stimulation of type 1 conventional dendritic cells. Importantly, improved intravesical bacterial immunotherapy using MBTVAC induced eradication of fully established bladder tumors, both as a monotherapy and specially in combination with the immune checkpoint inhibitor antiprogrammed cell death ligand 1 (anti PD-L1). Conclusion These results contribute to the understanding of the mechanisms behind successful bacterial immunotherapy against BC and characterize a novel therapeutic approach for BCG-unresponsive NMIBC cases. © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ

    Respiratory Immunization With a Whole Cell Inactivated Vaccine Induces Functional Mucosal Immunoglobulins Against Tuberculosis in Mice and Non-human Primates

    Get PDF
    Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines

    BRIVA-LIFE–A multicenter retrospective study of the long-term use of brivaracetam in clinical practice

    Get PDF
    Objectives: Evaluate long-term effectiveness and tolerability of brivaracetam in clinical practice in patients with focal epilepsy. Materials and Methods: This was a multicenter retrospective study. Patients aged =16 years were started on brivaracetam from November 2016 to June 2017 and followed over 1 year. Data were obtained from medical records at 3, 6 and 12 months after treatment initiation for evaluation of safety- and seizure-related outcomes. Results: A total of 575 patients were included in analyses; most had been treated with =4 lifetime antiepileptic drugs. Target dosage was achieved by 30.6% of patients on the first day. Analysis of primary variables at 12 months revealed that mean reduction in seizure frequency was 36.0%, 39.7% of patients were =50% responders and 17.5% were seizure-free. Seizure-freedom was achieved by 37.5% of patients aged =65 years. Incidence of adverse events (AEs) and psychiatric AEs (PAEs) was 39.8% and 14.3%, respectively, and discontinuation due to these was 8.9% and 3.7%, respectively. Somnolence, irritability, and dizziness were the most frequently reported AEs. At baseline, 228 (39.7%) patients were being treated with levetiracetam; most switched to brivaracetam (dose ratio 1:10-15). Among those who switched because of PAEs (n = 53), 9 (17%) reported PAEs on brivaracetam, and 3 (5.7%) discontinued because of PAEs. Tolerability was not highly affected among patients with learning disability or psychiatric comorbidity. Conclusions: In a large population of patients with predominantly drug-resistant epilepsy, brivaracetam was effective and well-tolerated; no unexpected AEs occurred over 1 year, and the incidence of PAEs was lower compared with levetiracetam

    Changes in fatty acid dietary profile affect the brain–gut axis functions of healthy young adult rats in a sex-dependent manner

    Get PDF
    This article belongs to the Special Issue Dietary Management of Gastrointestinal Diseases and Disorders.Dietary modifications, including those affecting dietary fat and its fatty acid (FA) composition, may be involved in the development of brain–gut axis disorders, with different manifestations in males and females. Our aim was to evaluate the impact of three purified diets with different FA composition on the brain–gut axis in rats of both sexes. Male and female Wistar rats fed a cereal-based standard diet from weaning were used. At young adult age (2–3 months old), animals were divided into three groups and treated each with a different refined diet for 6 weeks: a control group fed on AIN-93G diet containing 7% soy oil (SOY), and two groups fed on AIN-93G modified diets with 3.5% soy oil replaced by 3.5% coconut oil (COCO) or 3.5% evening primrose oil (EP). Different brain–gut axis parameters were evaluated during 4–6 weeks of dietary intervention. Compared with SOY diet (14% saturated FAs, and 58% polyunsaturated FAs), COCO diet (52.2% saturated FAs and 30% polyunsaturated FAs) produced no changes in brain functions and minor gastrointestinal modifications, whereas EP diet (11.1% saturated FAs and 70.56% polyunsaturated FAs) tended to decrease self-care behavior and colonic propulsion in males, and significantly increased exploratory behavior, accelerated gastrointestinal transit, and decreased cecum and fecal pellet density in females. Changes in FA composition, particularly an increase in ω-6 polyunsaturated FAs, seem to facilitate the development of brain–gut axis alterations in a sex-dependent manner, with a relatively higher risk in females.We thank Comunidad Autónoma de Madrid for the technician contract of Lorena Blanco (PEJ15/BIO/TL-0580) and the predoctoral contract of Yolanda López-Tofiño (PEJD-2017-PRE/BMD-3924), and URJC for the predoctoral contracts of Yolanda López-Tofiño and Carlos Gálvez-Robleño (both under PREDOC20-054 call). Damian Jacenik was a recipient of fellowship funded by Faculty of Biology and Environmental Protection, University of Lodz, Poland.Peer reviewe

    Radiographic and histopathological study of gastrointestinal dysmotility in lipopolysaccharide-induced sepsis in the rat

    No full text
    Background: Sepsis is a highly incident condition in which a cascade of proinflammatory cytokines is involved. One of its most frequent consequences is ileus, which can increase mortality. Animal models such as that induced by systemic administration of lipopolysaccharide (LPS) are useful to deeply evaluate this condition. The effects of sepsis on the gastrointestinal (GI) tract have been explored but, to our knowledge, in vivo studies showing the motor and histopathological consequences of endotoxemia in an integrated way are lacking. Our aim was to study in rats the effects of sepsis on GI motility, using radiographic methods, and to assess histological damage in several organs. Methods: Male rats were intraperitoneally injected with saline or E. coli LPS at 0.1, 1, or 5 mg kg. Barium sulfate was intragastrically administered, and X-rays were performed 0–24 h afterwards. Several organs were collected for organography, histopathology, and immunohistochemistry studies. Key Results: All LPS doses caused gastroparesia, whereas changes in intestinal motility were dose-and time-dependent, with an initial phase of hypermotility followed by paralytic ileus. Lung, liver, stomach, ileum, and colon (but not spleen or kidneys) were damaged, and density of neutrophils and activated M2 macrophages and expression of cyclooxygenase 2 were increased in the colon 24 h after LPS 5 mg kg. Conclusions and Inferences: Using radiographic, noninvasive methods for the first time, we show that systemic LPS causes dose-, time-, and organ-dependent GI motor effects. Sepsis-induced GI dysmotility is a complex condition whose management needs to take its time-dependent changes into account.Comunidad de Madrid, Grant/Award Number: S-SAL/0261/2006 and S2010/BMD- 2308; Fundación Ibercaja- Universidad de Zaragoza, Grant/Award Number: JIUZ-2015- BIO- 02; Gobierno de Aragón, Grant/Award Number: B04_17R and B29_17R; Ministerio de Ciencia e Innovación, Grant/Award Number: SAF2012-40075-C02- 01; Ministeriode Ciencia, Innovación y Universidades, Grant/Award Number: AGL2017-82987-R and SAF2017-83120-C2- 1- R; Universidad Rey Juan Carlos-Banco de Santander, Grant/Award Number: Call 2020 (NACfightsCOVID-19

    Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds

    Get PDF
    This article belongs to the Special Issue Dietary Lipids and Human Health.The bioaccessibility, metabolism, and excretion of lipids composing spent coffee grounds (SCGs) were investigated. An analysis of mycotoxins and an acute toxicity study in rats were performed for safety evaluation. Total fat, fatty acids, and diterpenes (cafestol and kahweol) were determined in SCGs and their digests obtained in vitro. A pilot repeated intake study was carried out in Wistar rats using a dose of 1 g SCGs/kg b.w. for 28 days. Fat metabolism was evaluated by analysis of total fat, cholesterol, and histology in liver. The dietary fiber effect of SCGs was measured radiographically. The absence of mycotoxins and toxicity was reported in SCGs. A total of 77% of unsaturated fatty acids and low amounts of kahweol (7.09 µg/g) and cafestol (414.39 µg/g) were bioaccessible after in vitro digestion. A significantly lower (p < 0.1) accumulation of lipids in the liver and a higher excretion of these in feces was found in rats treated with SCGs for 28 days. No lipid droplets or liver damage were observed by histology. SCGs acutely accelerated intestinal motility in rats. SCGs might be considered a sustainable, safe, and healthy food ingredient with potential for preventing hepatic steatosis due to their effect as dietary fiber with a high fat-holding capacity.This research was funded by the SUSCOFFEE (AGL2014-57239-R) Project.Peer reviewe

    Assessment of plasma chitotriosidase activity, CCL18/PARC concentration and NP-C suspicion index in the diagnosis of Niemann-Pick disease type C : A prospective observational study

    Get PDF
    Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive neurodegenerative disease caused by mutations in either the NPC1 or NPC2 genes. The diagnosis of NP-C remains challenging due to the non-specific, heterogeneous nature of signs/symptoms. This study assessed the utility of plasma chitotriosidase (ChT) and Chemokine (C-C motif) ligand 18 (CCL18)/pulmonary and activation-regulated chemokine (PARC) in conjunction with the NP-C suspicion index (NP-C SI) for guiding confirmatory laboratory testing in patients with suspected NP-C. In a prospective observational cohort study, incorporating a retrospective determination of NP-C SI scores, two different diagnostic approaches were applied in two separate groups of unrelated patients from 51 Spanish medical centers (n = 118 in both groups). From Jan 2010 to Apr 2012 (Period 1), patients with ≥2 clinical signs/symptoms of NP-C were considered 'suspected NP-C' cases, and NPC1/NPC2 sequencing, plasma chitotriosidase (ChT), CCL18/PARC and sphingomyelinase levels were assessed. Based on findings in Period 1, plasma ChT and CCL18/PARC, and NP-C SI prediction scores were determined in a second group of patients between May 2012 and Apr 2014 (Period 2), and NPC1 and NPC2 were sequenced only in those with elevated ChT and/or elevated CCL18/PARC and/or NP-C SI ≥70. Filipin staining and 7-ketocholesterol (7-KC) measurements were performed in all patients with NP-C gene mutations, where possible. In total across Periods 1 and 2, 10/236 (4%) patients had a confirmed diagnosis o NP-C based on gene sequencing (5/118 [4.2%] in each Period): all of these patients had two causal NPC1 mutations. Single mutant NPC1 alleles were detected in 8/236 (3%) patients, overall. Positive filipin staining results comprised three classical and five variant biochemical phenotypes. No NPC2 mutations were detected. All patients with NPC1 mutations had high ChT activity, high CCL18/PARC concentrations and/or NP-C SI scores ≥70. Plasma 7-KC was higher than control cut-off values in all patients with two NPC1 mutations, and in the majority of patients with single mutations. Family studies identified three further NP-C patients. This approach may be very useful for laboratories that do not have mass spectrometry facilities and therefore, they cannot use other NP-C biomarkers for diagnosis
    corecore