726 research outputs found

    COVID-19 and lung cancer: risks, mechanisms and treatment interactions.

    Get PDF
    Cases of the 2019 novel coronavirus also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to rise worldwide. To date, there is no effective treatment. Clinical management is largely symptomatic, with organ support in intensive care for critically ill patients. The first phase I trial to test the efficacy of a vaccine has recently begun, but in the meantime there is an urgent need to decrease the morbidity and mortality of severe cases. It is known that patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments. Therefore, these patients might be at increased risk of pulmonary complications from COVID-19. The SARS-CoV-2 could in some case induce excessive and aberrant non-effective host immune responses that are associated with potentially fatal severe lung injury and patients can develop acute respiratory distress syndrome (ARDS). Cytokine release syndrome and viral ARDS result from uncontrolled severe acute inflammation. Acute lung injury results from inflammatory monocyte and macrophage activation in the pulmonary luminal epithelium which lead to a release of proinflammatory cytokines including interleukin (IL)-6, IL-1 and tumor necrosis factor-α. These cytokines play a crucial role in immune-related pneumonitis, and could represent a promising target when the infiltration is T cell predominant or there are indirect signs of high IL-6-related inflammation, such as elevated C-reactive protein. A monoclonal anti-IL-6 receptor antibody, tocilizumab has been administered in a number of cases in China and Italy. Positive clinical and radiological outcomes have been reported. These early findings have led to an ongoing randomized controlled clinical trial in China and Italy. While data from those trials are eagerly awaited, patients' management will continue to rely for the vast majority on local guidelines. Among many other aspects, this crisis has proven that different specialists must join forces to deliver the best possible care to patients

    Embracing conservation success of recovering humpback whale populations: Evaluating the case for downlisting their conservation status in Australia

    Get PDF
    Optimism and hope in conservation biology are supported by examples of endangered species recovery, such as the population growth observed in humpback whales in several of the world's oceans. In Australia, monitoring data suggest rapid recovery for both east and west coast populations, which are now larger than 50% of their pre-whaling abundance. The measured growth rates exceed known species trends worldwide and have no indication of diminishing. Under Australian Commonwealth legislation and regulations, these populations should be considered for downlisting, as they are not eligible for listing as a threatened species against all statutory criteria. A change in conservation status will produce new challenges for the conservation and management of a recovered species, especially with the Australian economic landscape experiencing large-scale growth and development in recent years. More importantly, a recovered humpback whale population may bring a positive shift in the research goals and objectives throughout Australia by ensuring other endangered species an equal chance of recovery while delivering hope, optimism, and an opportunity to celebrate a conservation success

    Novel targets for immune-checkpoint inhibition in cancer.

    Get PDF
    Immune-checkpoint inhibitors have revolutionized cancer therapy, yet many patients either do not derive any benefit from treatment or develop a resistance to checkpoint inhibitors. Intrinsic resistance can result from neoantigen depletion, defective antigen presentation, PD-L1 downregulation, immune-checkpoint ligand upregulation, immunosuppression, and tumor cell phenotypic changes. On the other hand, extrinsic resistance involves acquired upregulation of inhibitory immune-checkpoints, leading to T-cell exhaustion. Current data suggest that PD-1, CTLA-4, and LAG-3 upregulation limits the efficacy of single-agent immune-checkpoint inhibitors. Ongoing clinical trials are investigating novel immune-checkpoint targets to avoid or overcome resistance. This review provides an in-depth analysis of the evolving landscape of potentially targetable immune-checkpoints in cancer. We highlight their biology, emphasizing the current understanding of resistance mechanisms and focusing on promising strategies that are under investigation. We also summarize current results and ongoing clinical trials in this crucial field that could once again revolutionize outcomes for cancer patients

    Sex Differences in the Chronology of Deciduous Tooth Emergence in White and Black Children

    Full text link
    Tooth emergence in 376 black and white children between the ages of 4 and 33 months was studied in southeastern Michigan. The results indicate a trend in both groups for boys to show earlier tooth emergence in early stages and for girls to show earlier tooth emergence in later stages of deciduous tooth emergence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66947/2/10.1177_00220345740530024001.pd

    社団法人神緑会事業報告1

    Get PDF
    Archaeology, linguistics, and existing genetic studies indicate that Oceania was settled by two major waves of migration. The first migration took place approximately 40 thousand years ago and these migrants, Papuans, colonized much of Near Oceania. Approximately 3.5 thousand years ago, a second expansion of Austronesian-speakers arrived in Near Oceania and the descendants of these people spread to the far corners of the Pacific, colonizing Remote Oceania. To assess the female contribution of these two human expansions to modern populations and to investigate the potential impact of other migrations, we obtained 1,331 whole mitochondrial genome sequences from 34 populations spanning both Near and Remote Oceania. Our results quantify the magnitude of the Austronesian expansion and demonstrate the homogenizing effect of this expansion on almost all studied populations. With regards to Papuan influence, autochthonous haplogroups support the hypothesis of a long history in Near Oceania, with some lineages suggesting a time depth of 60 thousand years, and offer insight into historical interpopulation dynamics. Santa Cruz, a population located in Remote Oceania, is an anomaly with extreme frequencies of autochthonous haplogroups of Near Oceanian origin; simulations to investigate whether this might reflect a pre-Austronesian versus Austronesian settlement of the island failed to provide unequivocal support for either scenario

    The Genetic Structure and History of Africans and African Americans.

    Get PDF
    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies

    ADZE: a rarefaction approach for counting alleles private to combinations of populations

    Get PDF
    Motivation: Analysis of the distribution of alleles across populations is a useful tool for examining population diversity and relationships. However, sample sizes often differ across populations, sometimes making it difficult to assess allelic distributions across groups
    corecore