28 research outputs found

    A HPLC‐DAD method for identifying and estimating the content of fucoxanthin, β‐carotene and chlorophyll a in brown algal extracts

    Get PDF
    Seaweeds are photosynthetic organisms that have high contents of pigments. The coloration of each alga is defined by the content and combination of pigments synthesized, which varies among species and environmental conditions. The most abundant pigments in algae are chlorophylls and carotenoids, lipophilic molecules that can be used as natural colorants and have high acceptance by consumers. In this work, a simple and short hands-on time HPLC-DAD method for identifying and estimating the pigment content of algal extracts, specifically fucoxanthin, β-carotene and chlorophyll a was carried out. Using this optimized method, a pigment screening was performed on the ethanolic extracts obtained by ultrasound-assisted extraction from nine brown algal from the Atlantic coastline: Ascophyllum nodosum, Bifurcaria bifurcata, Fucus spiralis, Himanthalia elongata, Laminaria saccharina, Laminaria ochroleuca, Pelvetia canaliculata, Sargassum muticum and Undaria pinnatifida. HPLC results permitted to highlight L. saccharina and U. pinnatifida as promising sources of these three target pigments containing a total amount of 10.5 – 11.5 mg per gram of dry weight. Among them, the most abundant one was fucoxanthin, an added-value compound with a high potential to be commercially exploited by different industries, such as the food, cosmetic, and pharmaceutical sectors.The research leading to these results was supported by MICINN sup- porting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891), the FPU grant for A. Carreira-Casais (FPU2016/06135); and by Xunta de Galicia for supporting the post-doctoral grant of M. Fraga-Corral (ED481B-2019/096). The research leading to these results was sup- ported by the European Union through the “NextGenerationEU ”pro- gram supporting the “Margarita Salas ”grant awarded to P. Garcia- Perez. Authors are grateful to AlgaMar company ( www.algamar.com ) for the collaboration and algal material provision. This research was funded by the Ibero-American Program on Science and Technology (CYTED —AQUA-CIBUS, P317RT0003), the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) that supports the work of C. Lourenço- Lopes. The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consor- tium. The project SYSTEMIC Knowledge hub on Nutrition and Food Se- curity, has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint ac- tion of JPI HDHL, JPI-OCEANS and FACCE-JPI launched in 2019 un- der the ERA-NET ERA-HDHL (n°696295). The authors would like to thank the EU and FCT for funding through the project PTDC/OCE- ETA/30240/2017- SilverBrain - From sea to brain: Green neuropro- tective extracts for nanoencapsulation and functional food production (POCI-01-0145-FEDER-030240).info:eu-repo/semantics/publishedVersio

    Aquaculture as a circular bio-economy model with Galicia as a study case: How to transform waste into revalorized by-products

    Get PDF
    Background: World-wide aquaculture represents a very important sector capable of supplying huge amounts of animal protein. However its relevance has proportionally augmented its waste generation. In Europe, the geographical constitution of Galicia has prompted the instauration of many aquaculture-based systems along its coasts. Indeed aquaculture means a very relevant industry in Galicia, together with animal farming, agriculture and biotechnology. Scope and approach: Over the last decade Europe legislation encourages the proper management of wastes (mostly reutilization and reducing strategies) and the sustainable use of natural resources. The application of circular bio-economy (reuse of wastes) represents a feasible model to protect human and animal health and the environment. To achieve a more efficient production system that complies with European regulations, aquaculture wastes and sub-products need to be re-utilised to increase their throughput. This approach will positively impact on their economical yield while reducing their generation and thus protecting health and environment. Key findings and conclusions: Different applications have been considered for re-using aquaculture wastes and sub-products. One of the most efficient approaches is the establishment of models that allow the metabolic waste reduction, as the integrated multi-trophic aquaculture. For derived aquaculture sub-products, the most efficient process is recovering important biomolecules such as proteins (collagen, gelatine), polysaccharides (chitosan), lipids (omega 3) or pigments (astaxanthin or beta-carotene). Biomolecules can further be applied for human and animal consumption, food industry, cosmetics or pharmaceuticals. Due to the importance of this productive system in Galicia it is critical its update to include aquaculture into circular bio-economy.The research leading to these results received institutional and financial support from: Programa de Cooperaci´on Interreg V-A España—Portugal (POCTEP) 2014–2020 (projects Ref.: 0181_NANOEATERS_01_E and Ref: 0377_IBERPHENOL_6_E); Spanish Ministry of Economy, Industry and Competitiveness through the project AGL2015–67039–C3–1–R; MICINN supporting the Ram´on&Cajal grant for M.A. Prieto (RYC-2017-22891); Xunta de Galicia and University of Vigo for supporting the post-doctoral grant of María Fraga Corral (ED481B-2019/096) and the pre-doctoral grants of Antía Gonz´alez Pereira (ED481A-2019/0228) and P. García-Oliveira (ED481A-2019/ 295); Xunta de Galicia through the program EXCELENCIA-ED431F 2020/12 and the project ED431B 2019/24; Ibero-American Program on Science and Technology (CYTED - AQUA-CIBUS, P317RT0003); Axudas Conecta Peme (Xunta de Galicia) supporting the IN852A 2018/ 58 NeuroFood Project; AlgaMar (www.algamar.com); EcoChestnut Project (Erasmus+ KA202); Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBIJTI- 2019), the JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. Funding for open access charge: Universidade de Vigo/ CISUG.info:eu-repo/semantics/publishedVersio

    Prevalence of orthostatic hypotension in a series of elderly Mexican institutionalized patients

    Get PDF
    Background: Orthostatic hypotension (OH) is a common problem among the elderly. It is associated with an increase in morbidity and mortality, but its prevalence in Mexico is unknown. Methods: We conducted a cross-sectional prospective study of intern patients at several Mexican elderly assistance institutions. We carried out a history and took blood pressure readings in a seated position, immediately after standing up, and again after 3 min of standing up. Results: We evaluated 132 patients, mean age 82.3 ± 9.5 years, 74.1% of them female. Thirty-nine (29.3%) subjects had OH. They had a higher prevalence of hypothyroidism, Parkinson’s disease, depression and alcoholism. Their Minimental result was 15.45 ± 7.2 vs 16.12 ± 7.9 (p = 0.6) among those without OH, and their quality of life (Minnesota scale) was 12.1 ± 7.3 vs 9.15 ± 7.05 (p = 0.03). They used more ACEI, digoxin and levothyroxin. Hypertension and alcoholism showed respectively a RR of 2.6 (95% CI 0.9–7.6, p = 0.06) and 3.18 (95% CI 0.96–10.48, p = 0.05) to develop OH. Conclusions: OH was present in 29.3% of the studied population. A third of them had hypertension. The use of different medications does not solely explain OH, so it is necessary to look for different associations. Among those, chronic alcoholism stands out. OH is associated with a poorer quality of life and cognitive performance. OH is asymptomatic in most cases. (Cardiol J 2011; 18, 3: 282–288

    The primary headaches: genetics, epigenetics and a behavioural genetic model

    Get PDF
    The primary headaches, migraine with (MA) and without aura (MO) and cluster headache, all carry a substantial genetic liability. Familial hemiplegic migraine (FHM), an autosomal dominant mendelian disorder classified as a subtype of MA, is due to mutations in genes encoding neural channel subunits. MA/MO are considered multifactorial genetic disorders, and FHM has been proposed as a model for migraine aetiology. However, a review of the genetic studies suggests that the FHM genes are not involved in the typical migraines and that FHM should be considered as a syndromic migraine rather than a subtype of MA. Adopting the concept of syndromic migraine could be useful in understanding migraine pathogenesis. We hypothesise that epigenetic mechanisms play an important role in headache pathogenesis. A behavioural model is proposed, whereby the primary headaches are construed as behaviours, not symptoms, evolutionarily conserved for their adaptive value and engendered out of a genetic repertoire by a network of pattern generators present in the brain and signalling homeostatic imbalance. This behavioural model could be incorporated into migraine genetic research

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Antibacterial use of macroalgae compounds against foodborne pathogens

    Get PDF
    The search for food resources is a constant in human history. Nowadays, the search for natural and safe food supplies is of foremost importance. Accordingly, there is a renewed interest in eco-friendly and natural products for substitution of synthetic additives. In addition, microbial contamination of food products during their obtaining and distribution processes is still a sanitary issue, and an important target for the food industry is to avoid food contamination and its related foodborne illnesses. These diseases are fundamentally caused by certain microorganisms listed in this review and classified according to their Gram negative or positive character. Algae have proven to possess high nutritional value and a wide variety of biological properties due to their content in active compounds. Among these capabilities, macroalgae are recognized for having antimicrobial properties. Thus, the present paper revises the actual knowledge of microbial contaminants in the food industry and proposes antimicrobial algal compounds against those pathogenic bacteria responsible for food contamination as valuable molecules for its growth inhibition. The capacity of algae extracts to inhibit some major food pathogen growth was assessed. Moreover, the main applications of these compounds in the food industry were discussed while considering their favorable effects in terms of food safety and quality control

    Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens

    Get PDF
    The search for food resources is a constant in human history. Nowadays, the search for natural and safe food supplies is of foremost importance. Accordingly, there is a renewed interest in eco-friendly and natural products for substitution of synthetic additives. In addition, microbial contamination of food products during their obtaining and distribution processes is still a sanitary issue, and an important target for the food industry is to avoid food contamination and its related foodborne illnesses. These diseases are fundamentally caused by certain microorganisms listed in this review and classified according to their Gram negative or positive character. Algae have proven to possess high nutritional value and a wide variety of biological properties due to their content in active compounds. Among these capabilities, macroalgae are recognized for having antimicrobial properties. Thus, the present paper revises the actual knowledge of microbial contaminants in the food industry and proposes antimicrobial algal compounds against those pathogenic bacteria responsible for food contamination as valuable molecules for its growth inhibition. The capacity of algae extracts to inhibit some major food pathogen growth was assessed. Moreover, the main applications of these compounds in the food industry were discussed while considering their favorable effects in terms of food safety and quality controlThe research was funded by Programa de Cooperación Interreg V-A España—Portugal (POCTEP) 2014–2020 (projects ref. 0181_NANOEATERS_01_E and ref. 0377_IBERPHENOL_6_E) that supports the pre-doctoral grant for C. Jimenez-Lopez; by MICINN supporting the Ramón&Cajal grant for M. A. Prieto (RYC-2017-22891); by Xunta de Galicia and University of Vigo supporting the post-doctoral grant for M. Fraga-Corral (ED481B-2019/096); by Axudas Conecta Peme (Xunta de Galicia) supporting the IN852A 2018/58 NeuroFood Project; AlgaMar (www.algamar.com) that supports the pre-doctoral grant for C. Lourenço-Lopes; by EcoChestnut Project (Erasmus+ KA202) for supporting the work of M. Carpena; and by the project Bio Based Industries Joint Undertaking (JU) under grant agreement no 888003 UP4HEALTH Project (H2020-BBI-JTI-2019) for supporting the postdoctoral work of P. Gullón. This work also received financial support from REQUIMTE/LAQV, National Funds (FCT, Fundação para a Ciência e Tecnologia) through project UID/QUI/50006/2019 and by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-030240—PTDC/OCE-ETA/30240/2017.info:eu-repo/semantics/publishedVersio

    Enhancing the detection of Dinophysis spp. using electrochemical genosensors

    No full text
    Harmful algal blooms (HABs) pose a significant threat to the environment and public health. These blooms are defined by an accumulation of microscopic algae in water, and they can occur inlakes, rivers, estuaries, orcoastal areas. Factors like the unregulated runoff of agricultural and industrial wastes into the aquatic environment are believed to have transformed these ecosystems into favorable habitats for algae growth and proliferation. As a result, the frequency of these blooms is rising worldwide. Although these blooms are mostly harmless, certain species, namely dinoflagellates from the genus Dinophysis, produce toxins that pose a risk for human health. Therefore, the need for technological developments towards fast and precise detection of these toxin-producing microalgae is critical to prevent socio economical damages, as well as to assess the ecological status of marine ecosystems. In this work, an analytical approach based on an electrochemical genosensor device was developed to create a low-cost platform able to detect two dinoflagellate species from the genus Dinophysis: D.acuminataand D.acuta. The design of the DNA-based sensor involved three key steps: i) Sensing phase: consisted by a mixed self-assembled monolayer composed by a linear DNA capture probe and mercaptohexanol on to the disposable screen-printed gold electrodessurface; ii) Hybridization of complementary DNA sequence by using a sandwich format assay with enzymatic labels and iii) Electrochemical detection by chronoamperometry using an enzymatic scheme to amplify the electrochemical signal. The best analytical conditions used to study the relationship between electrochemical signal and DNA target concentration, to produce the best electrochemical genosensor device. Molecular biology tools, namely Polymerase Chain Reaction (PCR), will be used for further validation of the electrochemical genosensor to confirm its reliability. These advancements in analytical technologies contribute to the on going efforts in environmental management and public health protection by providing effective means for detectingand mitigating the risks associated with HABs. Further research and widespread implementation of these methods are required to ensure the safety and sustainability of aquatic ecosystems, safeguard public health, and facilitate proactive environmental management practices.info:eu-repo/semantics/publishedVersio
    corecore