1,273 research outputs found
Heat exchanger and method of making
A heat exchanger of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger
Heat exchanger and method of making
A heat exchange of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger
Clustering and gelation of hard spheres induced by the Pickering effect
A mixture of hard-sphere particles and model emulsion droplets is studied
with a Brownian dynamics simulation. We find that the addition of nonwetting
emulsion droplets to a suspension of pure hard spheres can lead to both
gas-liquid and fluid-solid phase separations. Furthermore, we find a stable
fluid of hard-sphere clusters. The stability is due to the saturation of the
attraction that occurs when the surface of the droplets is completely covered
with colloidal particles. At larger emulsion droplet densities a percolation
transition is observed. The resulting networks of colloidal particles show
dynamical and mechanical properties typical of a colloidal gel. The results of
the model are in good qualitative agreement with recent experimental findings
[E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of
colloidal particles and two immiscible fluids.Comment: 5 figures, 5 page
Computer simulations of colloidal transport on a patterned magnetic substrate
We study the transport of paramagnetic colloidal particles on a patterned
magnetic substrate with kinetic Monte Carlo and Brownian dynamics computer
simulations. The planar substrate is decorated with point dipoles in either
parallel or zigzag stripe arrangements and exposed to an additional external
magnetic field that oscillates in time. For the case of parallel stripes we
find that the magnitude and direction of the particle current is controlled by
the tilt angle of the external magnetic field. The effect is reliably obtained
in a wide range of ratios between temperature and magnetic permeability.
Particle transport is achieved only when the period of oscillation of the
external field is greater than a critical value. For the case of zigzag stripes
a current is obtained using an oscillating external field normal to the
substrate. In this case, transport is only possible in the vertex of the
zigzag, giving rise to a narrow stream of particles. The magnitude and
direction of the particle current are found to be controlled by a combination
of the zigzag angle and the distance of the colloids from the substrate.
Metropolis Monte Carlo and Brownian dynamics simulations predict results that
are in good agreement with each other. Using kinetic Monte Carlo we find that
at high density the particle transport is hindered by jamming.Comment: 8 pages, 9 figure
Crystallization and gelation in colloidal systems with short-ranged attractive interactions
We systematically study the relationship between equilibrium and
non-equilibrium phase diagrams of a system of short-ranged attractive colloids.
Using Monte Carlo and Brownian dynamics simulations we find a window of
enhanced crystallization that is limited at high interaction strength by a
slowing down of the dynamics and at low interaction strength by the high
nucleation barrier. We find that the crystallization is enhanced by the
metastable gas-liquid binodal by means of a two-stage crystallization process.
First, the formation of a dense liquid is observed and second the crystal
nucleates within the dense fluid. In addition, we find at low colloid packing
fractions a fluid of clusters, and at higher colloid packing fractions a
percolating network due to an arrested gas-liquid phase separation that we
identify with gelation. We find that this arrest is due to crystallization at
low interaction energy and it is caused by a slowing down of the dynamics at
high interaction strength. Likewise, we observe that the clusters which are
formed at low colloid packing fractions are crystalline at low interaction
energy, but glassy at high interaction energy. The clusters coalesce upon
encounter.Comment: 8 pages, 8 figure
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Particle conservation in dynamical density functional theory
We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium
Structural Transitions in A Crystalline Bilayer : The Case of Lennard Jones and Gaussian Core Models
We study structural transitions in a system of interacting particles arranged
as a crystalline bilayer, as a function of the density and the distance
between the layers. As is decreased a sequence of transitions involving
triangular, rhombic, square and centered rectangular lattices is observed. The
sequence of phases and the order of transitions depends on the nature of
interactions.Comment: 11 pages,6 figure
Пріоритети вдосконалення фінансової політики і структури зайнятості в бюджетному і промисловому секторах економіки
Обґрунтовано проблеми взаємозв’язку фінансування, зайнятості, віддачі праці та капіталу. Висвітлено засади формування фінансової політики, удосконалення структури зайнятості у бюджетному та промисловому секторах економіки України.
Ключові слова: фінансова політика, зайнятість, проблеми, економіка України.
-----Обосновываются проблемы взаимосвязи финансирования, занятости, отдачи труда и капитала. Освещаются принципы формирования финансовой политики, усовершенствования структуры занятости в бюджетном и промышленном секторах украинской экономики.
Ключевые слова: финансовая политика, занятость, проблемы, украинская экономика.
------Problems concerning interrelations between financing, employment, return on labour and capital are grounded. Principles of forming the financial policy, improvements in the structure of employment in the budgetary and industrial sectors of the economy of Ukraine are described.
Key words: financial policy, employment, problems, economy of Ukraine.
----
Superadiabatic forces in brownian many-body dynamics
Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories
- …
