1,273 research outputs found

    Heat exchanger and method of making

    Get PDF
    A heat exchanger of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger

    Heat exchanger and method of making

    Get PDF
    A heat exchange of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger

    Clustering and gelation of hard spheres induced by the Pickering effect

    Full text link
    A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids.Comment: 5 figures, 5 page

    Computer simulations of colloidal transport on a patterned magnetic substrate

    Full text link
    We study the transport of paramagnetic colloidal particles on a patterned magnetic substrate with kinetic Monte Carlo and Brownian dynamics computer simulations. The planar substrate is decorated with point dipoles in either parallel or zigzag stripe arrangements and exposed to an additional external magnetic field that oscillates in time. For the case of parallel stripes we find that the magnitude and direction of the particle current is controlled by the tilt angle of the external magnetic field. The effect is reliably obtained in a wide range of ratios between temperature and magnetic permeability. Particle transport is achieved only when the period of oscillation of the external field is greater than a critical value. For the case of zigzag stripes a current is obtained using an oscillating external field normal to the substrate. In this case, transport is only possible in the vertex of the zigzag, giving rise to a narrow stream of particles. The magnitude and direction of the particle current are found to be controlled by a combination of the zigzag angle and the distance of the colloids from the substrate. Metropolis Monte Carlo and Brownian dynamics simulations predict results that are in good agreement with each other. Using kinetic Monte Carlo we find that at high density the particle transport is hindered by jamming.Comment: 8 pages, 9 figure

    Crystallization and gelation in colloidal systems with short-ranged attractive interactions

    Full text link
    We systematically study the relationship between equilibrium and non-equilibrium phase diagrams of a system of short-ranged attractive colloids. Using Monte Carlo and Brownian dynamics simulations we find a window of enhanced crystallization that is limited at high interaction strength by a slowing down of the dynamics and at low interaction strength by the high nucleation barrier. We find that the crystallization is enhanced by the metastable gas-liquid binodal by means of a two-stage crystallization process. First, the formation of a dense liquid is observed and second the crystal nucleates within the dense fluid. In addition, we find at low colloid packing fractions a fluid of clusters, and at higher colloid packing fractions a percolating network due to an arrested gas-liquid phase separation that we identify with gelation. We find that this arrest is due to crystallization at low interaction energy and it is caused by a slowing down of the dynamics at high interaction strength. Likewise, we observe that the clusters which are formed at low colloid packing fractions are crystalline at low interaction energy, but glassy at high interaction energy. The clusters coalesce upon encounter.Comment: 8 pages, 8 figure

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure

    Particle conservation in dynamical density functional theory

    Get PDF
    We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium

    Structural Transitions in A Crystalline Bilayer : The Case of Lennard Jones and Gaussian Core Models

    Get PDF
    We study structural transitions in a system of interacting particles arranged as a crystalline bilayer, as a function of the density ρ\rho and the distance dd between the layers. As dd is decreased a sequence of transitions involving triangular, rhombic, square and centered rectangular lattices is observed. The sequence of phases and the order of transitions depends on the nature of interactions.Comment: 11 pages,6 figure

    Пріоритети вдосконалення фінансової політики і структури зайнятості в бюджетному і промисловому секторах економіки

    Get PDF
    Обґрунтовано проблеми взаємозв’язку фінансування, зайнятості, віддачі праці та капіталу. Висвітлено засади формування фінансової політики, удосконалення структури зайнятості у бюджетному та промисловому секторах економіки України. Ключові слова: фінансова політика, зайнятість, проблеми, економіка України. -----Обосновываются проблемы взаимосвязи финансирования, занятости, отдачи труда и капитала. Освещаются принципы формирования финансовой политики, усовершенствования структуры занятости в бюджетном и промышленном секторах украинской экономики. Ключевые слова: финансовая политика, занятость, проблемы, украинская экономика. ------Problems concerning interrelations between financing, employment, return on labour and capital are grounded. Principles of forming the financial policy, improvements in the structure of employment in the budgetary and industrial sectors of the economy of Ukraine are described. Key words: financial policy, employment, problems, economy of Ukraine. ----

    Superadiabatic forces in brownian many-body dynamics

    Get PDF
    Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories
    corecore