126 research outputs found

    Sequential model to describe the nicotinic synaptic current

    Get PDF
    An analytical formula is derived to describe the synaptic end plate current (epc) at the nicotinic receptor. Various concurrently occurring underlying processes, including (a) diffusion, (b) hydrolysis of acetylcholine, and (c) its binding to the dimeric receptor, were considered in order to develop the equation. Numeric solution of the equations that describe the events underlying the epc showed that these events occur in sequence, rather than concurrently. This sequential occurrence of the processes allowed for simplifications, which were used as the basis for the new description of the epc. The resulting formula serves as a tool for evaluating the relative contribution of the various processes in formation of the natural occurring transient epc

    Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling.

    Get PDF
    The tumor microenvironment (TME) exerts critical pro-tumorigenic effects through cytokines and growth factors that support cancer cell proliferation, survival, motility and invasion. Insulin-like growth factor-1 (IGF-1) and signal transducer and activator of transcription 3 (STAT3) stimulate colorectal cancer development and progression via cell autonomous and microenvironmental effects. Using a unique inhibitor, NT157, which targets both IGF-1 receptor (IGF-1R) and STAT3, we show that these pathways regulate many TME functions associated with sporadic colonic tumorigenesis in CPC-APC mice, in which cancer development is driven by loss of the Apc tumor suppressor gene. NT157 causes a substantial reduction in tumor burden by affecting cancer cells, cancer-associated fibroblasts (CAF) and myeloid cells. Decreased cancer cell proliferation and increased apoptosis were accompanied by inhibition of CAF activation and decreased inflammation. Furthermore, NT157 inhibited expression of pro-tumorigenic cytokines, chemokines and growth factors, including IL-6, IL-11 and IL-23 as well as CCL2, CCL5, CXCL7, CXCL5, ICAM1 and TGFβ; decreased cancer cell migratory activity and reduced their proliferation in the liver. NT157 represents a new class of anti-cancer drugs that affect both the malignant cell and its supportive microenvironment

    The NlpD Lipoprotein Is a Novel Yersinia pestis Virulence Factor Essential for the Development of Plague

    Get PDF
    Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague

    Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Get PDF
    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response

    Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF

    Get PDF
    This is the publisher's version, also available electronically from http://iai.asm.org/content/81/11/4220VirF is an AraC family transcriptional activator that is required for the expression of virulence genes associated with invasion and cell-to-cell spread by Shigella flexneri, including multiple components of the type three secretion system (T3SS) machinery and effectors. We tested a small-molecule compound, SE-1 (formerly designated OSSL_051168), which we had identified as an effective inhibitor of the AraC family proteins RhaS and RhaR, for its ability to inhibit VirF. Cell-based reporter gene assays with Escherichia coli and Shigella, as well as in vitro DNA binding assays with purified VirF, demonstrated that SE-1 inhibited DNA binding and transcription activation (likely by blocking DNA binding) by VirF. Analysis of mRNA levels using real-time quantitative reverse transcription-PCR (qRT-PCR) further demonstrated that SE-1 reduced the expression of the VirF-dependent virulence genes icsA, virB, icsB, and ipaB in Shigella. We also performed eukaryotic cell invasion assays and found that SE-1 reduced invasion by Shigella. The effect of SE-1 on invasion required preincubation of Shigella with SE-1, in agreement with the hypothesis that SE-1 inhibited the expression of VirF-activated genes required for the formation of the T3SS apparatus and invasion. We found that the same concentrations of SE-1 had no detectable effects on the growth or metabolism of the bacterial cells or the eukaryotic host cells, respectively, indicating that the inhibition of invasion was not due to general toxicity. Overall, SE-1 appears to inhibit transcription activation by VirF, exhibits selectivity toward AraC family proteins, and has the potential to be developed into a novel antibacterial agent

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    Identification of Chromosomal Genes in Yersinia pestis that Influence Type III Secretion and Delivery of Yops into Target Cells

    Get PDF
    Pathogenic Yersinia species possess a type III secretion system, which is required for the delivery of effector Yop proteins into target cells during infection. Genes encoding the type III secretion machinery, its substrates, and several regulatory proteins all reside on a 70-Kb virulence plasmid. Genes encoded in the chromosome of yersiniae are thought to play important roles in bacterial perception of host environments and in the coordinated activation of the type III secretion pathway. Here, we investigate the contribution of chromosomal genes to the complex regulatory process controlling type III secretion in Yersinia pestis. Using transposon mutagenesis, we identified five chromosomal genes required for expression or secretion of Yops in laboratory media. Four out of the five chromosomal mutants were defective to various extents at injecting Yops into tissue culture cells. Interestingly, we found one mutant that was not able to secrete in vitro but was fully competent for injecting Yops into host cells, suggesting independent mechanisms for activation of the secretion apparatus. When tested in a mouse model of plague disease, three mutants were avirulent, whereas two strains were severely attenuated. Together these results demonstrate the importance of Y. pestis chromosomal genes in the proper function of type III secretion and in the pathogenesis of plague

    Review on computational methods for Lyapunov functions

    Get PDF
    Lyapunov functions are an essential tool in the stability analysis of dynamical systems, both in theory and applications. They provide sufficient conditions for the stability of equilibria or more general invariant sets, as well as for their basin of attraction. The necessity, i.e. the existence of Lyapunov functions, has been studied in converse theorems, however, they do not provide a general method to compute them. Because of their importance in stability analysis, numerous computational construction methods have been developed within the Engineering, Informatics, and Mathematics community. They cover different types of systems such as ordinary differential equations, switched systems, non-smooth systems, discrete-time systems etc., and employ di_erent methods such as series expansion, linear programming, linear matrix inequalities, collocation methods, algebraic methods, set-theoretic methods, and many others. This review brings these different methods together. First, the different types of systems, where Lyapunov functions are used, are briefly discussed. In the main part, the computational methods are presented, ordered by the type of method used to construct a Lyapunov function
    corecore