13 research outputs found

    Evaluation of compliance with the Spanish Code of self-regulation of food and drinks advertising directed at children under the age of 12 years in Spain, 2012

    Get PDF
    OBJECTIVE: To evaluate compliance levels with the Spanish Code of self-regulation of food and drinks advertising directed at children under the age of 12 years (Publicidad, Actividad, Obesidad, Salud [PAOS] Code) in 2012; and compare these against the figures for 2008. STUDY DESIGN: Cross-sectional study. METHODS: Television advertisements of food and drinks (AFD) were recorded over 7 days in 2012 (8am-midnight) of five Spanish channels popular to children. AFD were classified as core (nutrient-rich/low-calorie products), non-core (nutrient-poor/rich-calorie products) or miscellaneous. Compliance with each standard of the PAOS Code was evaluated. AFD were deemed to be fully compliant when it met all the standards. RESULTS: Two thousand five hundred and eighty-two AFDs came within the purview of the PAOS Code. Some of the standards that registered the highest levels of non-compliance were those regulating the suitability of the information presented (79.4%) and those prohibiting the use of characters popular with children (25%). Overall non-compliance with the Code was greater in 2012 than in 2008 (88.3% vs 49.3%). Non-compliance was highest for advertisements screened on children's/youth channels (92.3% vs. 81.5%; P < 0.001) and for those aired outside the enhanced protection time slot (89.3% vs. 86%; P = 0.015). CONCLUSIONS: Non-compliance with the PAOS Code is higher than for 2008. Given the lack of effectiveness of self-regulation, a statutory system should be adopted to ban AFD directed at minors, or at least restrict it to healthy products.S

    Pim1, a MAP kinase involved in cell wall integrity in Pichia pastoris

    No full text

    Tryptophan Modulation in Cancer-Associated Cachexia Mouse Models

    No full text
    Cancer cachexia is a multifactorial syndrome that interferes with treatment and reduces the quality of life and survival of patients. Currently, there is no effective treatment or biomarkers, and pathophysiology is not clear. Our group reported alterations on tryptophan metabolites in cachectic patients, so we aim to investigate the role of tryptophan using two cancer-associated cachexia syngeneic murine models, melanoma B16F10, and pancreatic adenocarcinoma that is KPC-based. Injected mice showed signs of cancer-associated cachexia as reduction in body weight and raised spleen weight, MCP1, and carbonilated proteins in plasma. CRP and Myostatin also increased in B16F10 mice. Skeletal muscle showed a decrease in quadriceps weight and cross-sectional area (especially in B16F10). Higher expression of atrophy genes, mainly Atrogin1, was also observed. Plasmatic tryptophan levels in B16F10 tumor-bearing mice decreased even at early steps of tumorigenesis. In KPC-injected mice, tryptophan fluctuated but were also reduced and in cachectic patients were significantly lower. Treatment with 1-methyl-tryptophan, an inhibitor of tryptophan degradation, in the murine models resulted in the restoration of plasmatic tryptophan levels and an improvement on splenomegaly and carbonilated proteins levels, while changes in plasmatic inflammatory markers were mild. After the treatment, CCR2 expression in monocytes diminished and lymphocytes, Tregs, and CD8+, were activated (seen by increased in CD127 and CD25 expression, respectively). These immune cell changes pointed to an improvement in systemic inflammation. While treatment with 1-MT did not show benefits in terms of muscle wasting and atrophy in our experimental setting, muscle functionality was not affected and central nuclei fibers appeared, being a feature of regeneration. Therefore, tryptophan metabolism pathway is a promising target for inflammation modulation in cancer-associated cachexia

    Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas

    No full text
    Chronic inflammation increases the risk of developing one of several types of cancer. Inflammatory responses are currently thought to be controlled by mechanisms that rely on transcriptional networks that are distinct from those involved in cell differentiation1,2,3. The orphan nuclear receptor NR5A2 participates in a wide variety of processes, including cholesterol and glucose metabolism in the liver, resolution of endoplasmic reticulum stress, intestinal glucocorticoid production, pancreatic development and acinar differentiation4,5,6,7,8. In genome-wide association studies9,10, single nucleotide polymorphisms in the vicinity of NR5A2 have previously been associated with the risk of pancreatic adenocarcinoma. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration and cooperates with mutant Kras in tumour progression11. Here, using a global transcriptomic analysis, we describe an epithelial-cell-autonomous basal pre-inflammatory state in the pancreas of Nr5a2+/− mice that is reminiscent of the early stages of pancreatitis-induced inflammation and is conserved in histologically normal human pancreases with reduced expression of NR5A2 mRNA. In Nr5a2+/−mice, NR5A2 undergoes a marked transcriptional switch, relocating from differentiation-specific to inflammatory genes and thereby promoting gene transcription that is dependent on the AP-1 transcription factor. Pancreatic deletion of Jun rescues the pre-inflammatory phenotype, as well as binding of NR5A2 to inflammatory gene promoters and the defective regenerative response to damage. These findings support the notion that, in the pancreas, the transcriptional networks involved in differentiation-specific functions also suppress inflammatory programmes. Under conditions of genetic or environmental constraint, these networks can be subverted to foster inflammation
    corecore