379 research outputs found
DNA uptake into nuclei: Numerical and analytical results
The dynamics of polymer translocation through a pore has been the subject of
recent theoretical and experimental works. We have considered theoretical
estimates and performed computer simulations to understand the mechanism of DNA
uptake into the cell nucleus, a phenomenon experimentally investigated by
attaching a small bead to the free end of the double helix and pulling this
bead with the help of an optical trap. The experiments show that the uptake is
monotonous and slows down when the remaining DNA segment becomes very short.
Numerical and analytical studies of the entropic repulsion between the DNA
filament and the membrane wall suggest a new interpretation of the experimental
observations. Our results indicate that the repulsion monotonically decreases
as the uptake progresses. Thus, the DNA is pulled in (i) either by a small
force of unknown origin, and then the slowing down can be interpreted only
statistically; (ii) or by a strong but slow ratchet mechanism, which would
naturally explain the observed monotonicity, but then the slowing down requires
additional explanations. Only further experiments can unambiguously distinguish
between these two mechanisms.Comment: 12 pages, 6 figures, submitted to J. Phys. Cond. Ma
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
Elasticity model of a supercoiled DNA molecule
Within a simple elastic theory, we study the elongation versus force
characteristics of a supercoiled DNA molecule at thermal equilibrium in the
regime of small supercoiling. The partition function is mapped to the path
integral representation for a quantum charged particle in the field of a
magnetic monopole with unquantized charge.
We show that the theory is singular in the continuum limit and must be
regularised at an intermediate length scale. We find good agreement with
existing experimental data, and point out how to measure the twist rigidity
accurately.Comment: Latex, 4 pages. The figure contains new experimental data, giving a
new determination of the twist rigidit
Elasticity of Semiflexible Biopolymer Networks
We develop a model for gels and entangled solutions of semiflexible
biopolymers such as F-actin. Such networks play a crucial structural role in
the cytoskeleton of cells. We show that the rheologic properties of these
networks can result from nonclassical rubber elasticity. This model can explain
a number of elastic properties of such networks {\em in vitro}, including the
concentration dependence of the storage modulus and yield strain.Comment: Uses RevTeX, full postscript with figures available at
http://www.umich.edu/~fcm/preprints/agel/agel.htm
Colloid-Induced Polymer Compression
We consider a model mixture of hard colloidal spheres and non-adsorbing
polymer chains in a theta solvent. The polymer component is modelled as a
polydisperse mixture of effective spheres, mutually noninteracting but excluded
from the colloids, with radii that are free to adjust to allow for
colloid-induced compression. We investigate the bulk fluid demixing behaviour
of this model system using a geometry-based density-functional theory that
includes the polymer size polydispersity and configurational free energy,
obtained from the exact radius-of-gyration distribution for an ideal
(random-walk) chain. Free energies are computed by minimizing the free energy
functional with respect to the polymer size distribution. With increasing
colloid concentration and polymer-to-colloid size ratio, colloidal confinement
is found to increasingly compress the polymers. Correspondingly, the demixing
fluid binodal shifts, compared to the incompressible-polymer binodal, to higher
polymer densities on the colloid-rich branch, stabilizing the mixed phase.Comment: 14 pages, 4 figure
Conformations of Linear DNA
We examine the conformations of a model for under- and overwound DNA. The
molecule is represented as a cylindrically symmetric elastic string subjected
to a stretching force and to constraints corresponding to a specification of
the link number. We derive a fundamental relation between the Euler angles that
describe the curve and the topological linking number. Analytical expressions
for the spatial configurations of the molecule in the infinite- length limit
were obtained. A unique configuraion minimizes the energy for a given set of
physical conditions. An elastic model incorporating thermal fluctuations
provides excellent agreement with experimental results on the plectonemic
transition.Comment: 5 pages, RevTeX; 6 postscript figure
Elasticity of semiflexible polymers with and without self-interactions
A {\it new} formula for the force vs extension relation is derived from the
discrete version of the so called {\it worm like chain} model. This formula
correctly fits some recent experimental data on polymer stretching and some
numerical simulations with pairwise repulsive potentials. For a more realistic
Lennard-Jones potential the agreement with simulations is found to be good when
the temperature is above the temperature. For lower temperatures a
plateau emerges, as predicted by some recent experimental and theoretical
results, and our formula gives good results only in the high force regime. We
briefly discuss how other kinds of self-interactions are expected to affect the
elasticity of the polymer.Comment: 8 pages, 10 figure
A Neutral Polyampholyte in an ionic solution
The behavior of a neutral polyampholyte () chain with monomers, in an
ionic solution, is analyzed in the framework of the full Debye-Hckel-Bjerrum-Flory theory. A chain, that in addition to the
neutral monomers, also contains an equal number of positively and negatively
charged monomers, is dissolved in an ionic solution. For \underline{high}
concentrations of salt and at high temperatures, the exists in an extended
state. As the temperature is decreased, the electrostatic energy becomes more
relevant and at a the system collapses into a dilute globular
state, or microelectrolyte. This state contains a concentration of salt higher
than the surrounding medium. As the temperature is decreased even further,
association between the monomers of the polymer and the ions of the salt
becomes relevant and there is a crossover from this globular state to a low
temperature extended state. For \underline{low} densities of salt, the system
is collapsed for almost all temperatures and exhibits a first-order phase
transition to an extended state at an unphysical low temperature.Comment: 10 pages, Revtex with epsf, 9 Postscript figures. Submitted to PR
Tension Dynamics and Linear Viscoelastic Behavior of a Single Semiflexible Polymer Chain
We study the dynamical response of a single semiflexible polymer chain based
on the theory developed by Hallatschek et al. for the wormlike-chain model. The
linear viscoelastic response under oscillatory forces acting at the two chain
ends is derived analytically as a function of the oscillation frequency . We
shall show that the real part of the complex compliance in the low frequency
limit is consistent with the static result of Marko and Siggia whereas the
imaginary part exhibits the power-law dependence +1/2. On the other hand, these
compliances decrease as the power law -7/8 for the high frequency limit. These
are different from those of the Rouse dynamics. A scaling argument is developed
to understand these novel results.Comment: 23 pages, 6 figure
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
- …
