38 research outputs found

    Selective breeding for susceptibility to myopia reveals a gene-environment interaction

    Get PDF
    Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks

    Childhood febrile illness and the risk of myopia in UK Biobank participants

    Get PDF
    Purpose Historical reports suggest febrile illness during childhood is a risk factor for myopia. The establishment of the UK Biobank provided a unique opportunity to investigate this relationship. Patients and methods We studied a sample of UK Biobank participants of White ethnicity aged 40–69 years old who underwent autorefraction (N=91 592) and were classified as myopic (≤−0.75 Dioptres (D)), highly myopic (≤−6.00 D), or non-myopic (>−0.75 D). Self-reported age at diagnosis of past medical conditions was ascertained during an interview with a nurse at a Biobank assessment centre. Logistic regression analysis was used to calculate the odds ratio (OR) for myopia or high myopia associated with a diagnosis before age 17 years of each of nine febrile illnesses, after adjusting for potential confounders (age, sex, highest educational qualification, and birth order). Results Rubella, mumps, and pertussis were associated with myopia: rubella, OR=1.38, 95% CI: 1.03–1.85, P=0.030; mumps, OR=1.32, 95% CI: 1.07–1.64, P=0.010; and pertussis, OR=1.39, 95% CI 1.03–1.87, P=0.029. Measles, rubella, and pertussis were associated with high myopia: measles, OR=1.48, 95% CI: 1.07–2.07, P=0.019; rubella, OR=1.94, 95% CI: 1.12–3.35, P=0.017; and pertussis, OR=2.15, 95% CI: 1.24–3.71, P=0.006. The evidence did not support an interaction between education and febrile illness in explaining the above risks. Conclusion A history of childhood measles, rubella, or pertussis was associated with high myopia, whereas a history of childhood rubella, mumps, or pertussis was associated with any myopia. The reasons for these associations are unclear

    Association of anthropometric measures across the life-course with refractive error and ocular biometry at age 15 years

    Get PDF
    YesBackground A recent Genome-wide association meta-analysis (GWAS) of refractive error reported shared genetics with anthropometric traits such as height, BMI and obesity. To explore a potential relationship with refractive error and ocular structure we performed a life-course analysis including both maternal and child characteristics using data from the Avon Longitudinal Study of Parents and Children cohort. Methods Measures collected across the life-course were analysed to explore the association of height, weight, and BMI with refractive error and ocular biometric measures at age 15 years from 1613children. The outcome measures were the mean spherical equivalent (MSE) of refractive error (dioptres), axial length (AXL; mm), and radius of corneal curvature (RCC; mm). Potential confounding variables; maternal age at conception, maternal education level, parental socio-economic status, gestational age, breast-feeding, and gender were adjusted for within each multi-variable model. Results Maternal height was positively associated with teenage AXL (0.010 mm; 95% CI: 0.003, 0.017) and RCC (0.005 mm; 95% CI: 0.003, 0.007), increased maternal weight was positively associated with AXL (0.004 mm; 95% CI: 0.0001, 0.008). Birth length was associated with an increase in teenage AXL (0.067 mm; 95% CI: 0.032, 0.10) and flatter RCC (0.023 mm; 95% CI: 0.013, 0.034) and increasing birth weight was associated with flatter RCC (0.005 mm; 95% CI: 0.0003, 0.009). An increase in teenage height was associated with a lower MSE (− 0.007 D; 95% CI: − 0.013, − 0.001), an increase in AXL (0.021 mm; 95% CI: 0.015, 0.028) and flatter RCC (0.008 mm; 95% CI: 0.006, 0.010). Weight at 15 years was associated with an increase in AXL (0.005 mm; 95% CI: 0.001, 0.009). Conclusions At each life stage (pre-natal, birth, and teenage) height and weight, but not BMI, demonstrate an association with AXL and RCC measured at age 15 years. However, the negative association between refractive error and an increase in height was only present at the teenage life stage. Further research into the growth pattern of ocular structures and the development of refractive error over the life-course is required, particularly at the time of puberty

    Klinische Relevanz der urinaeren Ausscheidung von Wachstumsfaktoren bei Tumorpatientinnen Schlussbericht

    No full text
    24-urine samples from patients with ovarian malignancies, benign ovarian tumors and healthy controls were analysed for the presence of epidermal growth factor (EGF), transforming growth factor #alpha# (TGF-#alpha#), platelet-derived growth factor (PDGF) and insulin like growth factor I (IGF I) activity to check the evidence of urinary growth factor secretion for early detection of ovarian carcinoma. The samples were assayed for immunoreactivity, radiorecptor competition, anchorage independent growth and proliferative activity. No differences in urinary EGF, PDGF and IGE-I excretion between cancer patients and the control group was detected. However, 79,4% (23 of 29) of the patients with disseminated cancer excreted TGF#alpha#, but only 23% (3 of 13) of the control persons and 17% of the patients with benign ovarian cancer. Moreover, the patients with ovarian carcinomas extreted significantly higher amounts of TGF-#alpha# (median: 12,6 pmol/24h) than control persons (median: 0 pmol/24h) and patients with benign ovarian tumours (median: 0 pmol/24h). There was no correlation between clinical parameters i.e. histological grading or size of the tumors with urinary growth factor concentration. The ratio of high molecular weight (HMW) and low molecular weight (LMW) forms of EGF and TGF-#alpha# were analysed by gel filtration chromatography. The EGF and TFG-#alpha# profiles of the cancer patients revealed a greater molecular heterogenity than those of controls. HMW forms of EGF and TGF-#alpha# seems to be tumorassociated. All HMW and LMW forms of EGF were capable of inducing a biological effect, including mitogenic and clonogenic activities. Human ovarian carcinoma cell lines (EFO-21 and EFO-27) secreted predominantly TGF#alpha# or EGF. IGF-I was bound to a group of soluble IGF binding proteins (IGFBP 2-6, not IGFBP 1). (orig.)SIGLEAvailable from TIB Hannover: F95B584+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman

    Selective Breeding for Susceptibility to Myopia Reveals a Gene–Environment Interaction

    No full text
    Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks

    The effect of manipulations to target contrast on emmetropization in chick

    No full text
    Emmetropization is dependent on visual feedback and presumably some measure of the optical and image quality of the eye. We investigated the effect of simple alterations to image contrast on eye growth and refractive development. A 1.6 cyc/deg square-wave-grating target was located at the end of a 3.3 cm cone,, imaged by a +30 D lens and applied monocularly to the eyes of 8-day-old chicks. Eleven different contrast targets were tested: 95, 67, 47.5, 33.5, 24, 17, 12, 8.5, 4.2, 2.1, and 0%. Refractive error (RE), vitreous chamber depth (VC) and axial length (AL) varied with the contrast of the image (RE diff. F-10.86 = 12.420, p < 0.0005; VC diff. F-10.86 = 8.756, p < 0.0005; AL diff. F-10.86 = 9.240, p < 0.0005). Target contrasts 4.2% and lower produced relative myopia (4.2%: RE diff = -7.48 +/- 2.26 D, p = 0.987; 2.1%: RE diff = -7.22 +/- 2.77 D, p = 0.951) of similar amount to that observed in response to a featureless 0% contrast target (RE diff = -9.11 +/- 4.68 D). For target contrast levels 47.5% and greater isometropia was maintained (95%: RE diff = 1.83 +/- 2.78 D; 67%: RE diff = 0.14 +/- 1.84 D; 47.5% RE diff = 0.25 +/- 1.82 D). Contrasts in between produced an intermediate amount of myopia (33.5%: RE diff = -2.81 +/- 1.80 D; 24%: RE diff = -3.45 +/- 1.64 D; 17%: RE diff = -3.19 +/- 1.54 D; 12%: RE diff = -4.08 +/- 3.56 D; 8.5%: RE diff = -4.09 +/- 3.60 D). We conclude that image contrast provides important visual information for the eye growth control system or that contrast must reach a threshold value for some other emmetropization signal to function. (c) 2005 Elsevier Ltd. All rights reserved
    corecore