1,145 research outputs found

    Light spin-1/2 or spin-0 Dark Matter particles

    Full text link
    We recall and precise how light spin-0 particles could be acceptable Dark Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate the (rather large) annihilation cross sections required, and show how they may be induced by a new light neutral spin-1 boson U. If this one is vectorially coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation cross section into e+e- automatically includes a v_dm^2 suppression factor at threshold, as desirable to avoid an excessive production of gamma rays from residual Dark Matter annihilations. We also relate Dark Matter annihilations with production cross sections in e+e- scatterings. Annihilation cross sections of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same expressions. Just as for spin-0, light spin-1/2 Dark Matter particles annihilating into e+e- could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge.Comment: 10 page

    Probing the SUSY breaking scale at an e−e−e^-e^- collider

    Get PDF
    If supersymmetry is spontaneously at a low energy scale then the resulting gravitino would be very light. The interaction strength of the longitudinal components of such a light gravitino to electron-selectron pair then becomes comparable to that of electroweak interactions. Such a light gravitino could modify the cross-section for e^_L e^_R-->\tilde {e}_L\tilde {e}_R from its MSSM value. Precision measurement of this cross-section could therefore be used to probe the low energy SUSY breaking scale.Comment: Plain Tex, 7 pages, No figure

    Integral and Light Dark Matter

    Full text link
    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter particle at variance with the neutralino, in general considered as very heavy. We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π∘\pi^\circ decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson UU. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter.Comment: 7 pages, 0 figures. To appear in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munich, German

    Effective Two Higgs Doublets in Nonminimal Supersymmetric Models

    Full text link
    The Higgs sectors of supersymmetric extensions of the Standard Model have two doublets in the minimal version (MSSM), and two doublets plus a singlet in two others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise comparison of these three models is possible if we assume that the singlet has a somewhat larger breaking scale compared to the electroweak scale. In that case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models (THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral Higgs boson has an upper bound in each case. We find that in the NMSSM, this bound exceeds not very much that of the MSSM, unless tan(beta) is near one. However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure

    Implications of Low Energy Supersymmetry Breaking at the Tevatron

    Get PDF
    The signatures for low energy supersymmetry breaking at the Tevatron are investigated. It is natural that the lightest standard model superpartner is an electroweak neutralino, which decays to an essentially massless Goldstino and photon, possibly within the detector. In the simplest models of gauge-mediated supersymmetry breaking, the production of right-handed sleptons, neutralinos, and charginos leads to a pair of hard photons accompanied by leptons and/or jets with missing transverse energy. The relatively hard leptons and softer photons of the single e^+e^- \gamma \gamma + \EmissT event observed by CDF implies this event is best interpreted as arising from left-handed slepton pair production. In this case the rates for l^{\pm} \gamma \gamma + \EmissT and \gamma \gamma + \EmissT are comparable to that for l^+l^- \gamma \gamma + \EmissT.Comment: 18 pages, Latex, tables correcte

    One-loop Higgs mass finiteness in supersymmetric Kaluza-Klein theories

    Get PDF
    We analyze the one-loop ultraviolet sensitivity of the Higgs mass in a five-dimensional supersymmetric theory compactified on the orbifold S^1/Z_2, with superpotential localized on a fixed-point brane. Four-dimensional supersymmetry is broken by Scherk-Schwarz boundary conditions. Kaluza-Klein interactions are regularized by means of a brane Gaussian distribution along the extra dimension with length l_s\simeq\Lambda^{-1}_s, where \Lambda_s is the cutoff of the five-dimensional theory. The coupling of the n-mode, with mass M^{(n)}, acquires the n-dependent factor exp{-(M^{(n)}/\Lambda_s)^2/2}, which makes it to decouple for M^{(n)}\gg \Lambda_s. The sensitivity of the Higgs mass on \Lambda_s is strongly suppressed and quadratic divergences cancel by supersymmetry. The one-loop correction to the Higgs mass is finite and equals, for large values of \Lambda_s, the value obtained by the so-called KK-regularization.Comment: 8 pages, 1 figure. The discussion on the distribution giving rise to couplings suppressed by exp(-M/Lambda) is revised and the result is finite and equals that of the Gaussian cas

    Testing the equivalence principle: why and how?

    Full text link
    Part of the theoretical motivation for improving the present level of testing of the equivalence principle is reviewed. The general rationale for optimizing the choice of pairs of materials to be tested is presented. One introduces a simplified rationale based on a trichotomy of competing classes of theoretical models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra

    Tau Polarizations in the Three-body Slepton Decays with Stau as the NLSP

    Get PDF
    In the gauge-mediated supersymmetry breaking models with scalar tau as the next-to-lightest supersymmetric particle, a scalar lepton may decay dominantly into its superpartner, tau lepton, and the lightest scalar tau particle. We give detailed formulas for the three-body decay amplitudes and the polarization asymmetry of the outgoing tau lepton . We find that the tau polarizations are sensitive to the model parameters such as the stau mixing angle, the neutralino to slepton mass ratio and the neutralino mixing effect.Comment: 13 pages, 5 figures, RevTe

    Spontaneously Broken N=2 Supergravity Without Light Mirror Fermions

    Get PDF
    We present a spontaneously broken N=2 supergravity model that reduces in the flat limit to a globally supersymmetric N=2 system with explicit soft supersymmetry breaking terms. These soft terms generate a mass O(100 GeV) for mirror quarks and leptons, while leaving the physical fermions light, thereby overcoming one of the major obstacles towards the construction of a realistic N=2 model of elementary interactions.Comment: 20 pages, Late
    • 

    corecore