36 research outputs found

    Point process model of 1/f noise versus a sum of Lorentzians

    Full text link
    We present a simple point process model of 1/fÎČ1/f^{\beta} noise, covering different values of the exponent ÎČ\beta. The signal of the model consists of pulses or events. The interpulse, interevent, interarrival, recurrence or waiting times of the signal are described by the general Langevin equation with the multiplicative noise and stochastically diffuse in some interval resulting in the power-law distribution. Our model is free from the requirement of a wide distribution of relaxation times and from the power-law forms of the pulses. It contains only one relaxation rate and yields 1/fÎČ1/f^ {\beta} spectra in a wide range of frequency. We obtain explicit expressions for the power spectra and present numerical illustrations of the model. Further we analyze the relation of the point process model of 1/f1/f noise with the Bernamont-Surdin-McWhorter model, representing the signals as a sum of the uncorrelated components. We show that the point process model is complementary to the model based on the sum of signals with a wide-range distribution of the relaxation times. In contrast to the Gaussian distribution of the signal intensity of the sum of the uncorrelated components, the point process exhibits asymptotically a power-law distribution of the signal intensity. The developed multiplicative point process model of 1/fÎČ1/f^{\beta} noise may be used for modeling and analysis of stochastic processes in different systems with the power-law distribution of the intensity of pulsing signals.Comment: 23 pages, 10 figures, to be published in Phys. Rev.

    Computer-assisted and patient-specific 3-D planning and evaluation of a single-cut rotational osteotomy for complex long-bone deformities

    Get PDF
    Malunion after long bone fracture results in an incorrect position of the distal bone segment. This misalignment may lead to reduced function of the limb, early osteoarthritis and chronic pain. An established treatment option is a corrective osteotomy. For complex malunions, a single-cut rotational osteotomy is sometimes preferred in cases of angular deformity in three dimensions. However, planning and performing this type of osteotomy is relatively complex. This report describes a computer-assisted method for 3-D planning and realizing a single-cut rotational osteotomy with a patient-specific cutting guide for orienting the osteotomy and an angled jig for adjusting the rotation angle. The accuracy and reproducibility of the method is evaluated experimentally using plastic bones. In addition, complex rotational deformities are simulated by a computer to investigate the relation between deformity and correction parameters. The computed relation between deformity and correction parameters enables the surgeon to judge the feasibility of a single-cut rotational osteotomy. This appears possible for deformities combining axial misalignment with sufficient axial rotation. The proposed 3-D method of preoperative planning and transfer with a patient-specific cutting guide and angled jig renders the osteotomy procedure easily applicable, accurate, reproducible, and is a good alternative for complex and expensive navigation systems

    Cognitive Profile of Students Who Enter Higher Education with an Indication of Dyslexia

    Get PDF
    For languages other than English there is a lack of empirical evidence about the cognitive profile of students entering higher education with a diagnosis of dyslexia. To obtain such evidence, we compared a group of 100 Dutch-speaking students diagnosed with dyslexia with a control group of 100 students without learning disabilities. Our study showed selective deficits in reading and writing (effect sizes for accuracy between d = 1 and d = 2), arithmetic (d≈1), and phonological processing (d>0.7). Except for spelling, these deficits were larger for speed related measures than for accuracy related measures. Students with dyslexia also performed slightly inferior on the KAIT tests of crystallized intelligence, due to the retrieval of verbal information from long-term memory. No significant differences were observed in the KAIT tests of fluid intelligence. The profile we obtained agrees with a recent meta-analysis of English findings suggesting that it generalizes to all alphabetic languages. Implications for special arrangements for students with dyslexia in higher education are outlined

    Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-Îł 3-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance

    No full text
    Celiac disease is caused by inflammatory T-cell responses against the insoluble dietary protein gliadin. We have shown that, in humanized mice, oral tolerance to deamidated chymotrypsin-digested gliadin (CT-TG2-gliadin) is driven by tolerogenic interferon (IFN)-Îł 3- and interleukin (IL)-10-secreting type 1 regulatory T-like cells (Tr1-like cells) generated in the spleen but not in the mesenteric lymph nodes. We aimed to uncover the mechanisms underlying gliadin-specific Tr1-like-cell differentiation and hypothesized that proteolytic gliadin degradation by splenic macrophages is a decisive step in this process. In vivo depletion of macrophages caused reduced differentiation of splenic IFN-Îł 3- and IL-10-producing Tr1-like cells after CT-TG2-gliadin but not gliadin peptide feed. Splenic macrophages, rather than dendritic cells, constitutively expressed increased mRNA levels of the endopeptidase Cathepsin D; macrophage depletion significantly reduced splenic Cathepsin D expression in vivo and Cathepsin D efficiently degraded recombinant Îł 3-gliadin in vitro. In response to CT-TG2-gliadin uptake, macrophages enhanced the expression of Il27p28, a cytokine that favored differentiation of gliadin-specific Tr1-like cells in vitro, and was previously reported to increase Cathepsin D activity. Conversely, IL-27 neutralization in vivo inhibited splenic IFN-Îł 3- and IL-10-secreting Tr1-like-cell differentiation after CT-TG2-gliadin feed. Our data infer that endopeptidase mediated gliadin degradation by macrophages and concomitant IL-27 production drive differentiation of splenic gliadin-specific Tr1-like cells

    CsalĂĄdon belĂŒli veszĂ©lyeztetĂ©s korai felismerĂ©se Ă©s kezelĂ©se

    No full text
    Tolerance to harmless exogenous antigens is the default immune response in the gastrointestinal tract. Although extensive studies have demonstrated the importance of the mesenteric lymph nodes (MLNs) and intestinal CD103+ dendritic cells (DCs) in driving small intestinal tolerance to protein antigen, the structural and immunological basis of colonic tolerance remain poorly understood. We show here that the caudal and iliac lymph nodes (ILNs) are inductive sites for distal colonic immune responses and that colonic T cell-mediated tolerance induction to protein antigen is initiated in these draining lymph nodes and not in MLNs. In agreement, colonic tolerance induction was not altered by mesenteric lymphadenectomy. Despite tolerance development, CD103+CD11b+ DCs, which are the major migratory DC population in the MLNs, and the tolerance-related retinoic acid-generating enzyme RALDH2 were virtually absent from the ILNs. Administration of ovalbumin (OVA) to the distal colon did increase the number of CD11c+MHCIIhi migratory CD103−CD11b+ and CD103+CD11b− DCs in the ILNs. Strikingly, colonic tolerance was intact in Batf3-deficient mice specifically lacking CD103+CD11b− DCs, suggesting that CD103− DCs in the ILNs are sufficient to drive tolerance induction after protein antigen encounter in the distal colon. Altogether, we identify different inductive sites for small intestinal and colonic T-cell responses and reveal that distinct cellular mechanisms are operative to maintain tolerance at these sites

    Changes in Natural Foxp3<sup>+</sup>Treg but Not Mucosally-Imprinted CD62L<sup>neg</sup>CD38<sup>+</sup>Foxp3<sup>+</sup>Treg in the Circulation of Celiac Disease Patients

    Get PDF
    <div><p>Background</p><p>Celiac disease (CD) is an intestinal inflammation driven by gluten-reactive CD4<sup>+</sup> T cells. Due to lack of selective markers it has not been determined whether defects in inducible regulatory T cell (Treg) differentiation are associated with CD. This is of importance as changes in numbers of induced Treg could be indicative of defects in mucosal tolerance development in CD. Recently, we have shown that, after encounter of retinoic acid during differentiation, circulating gut-imprinted T cells express CD62L<sup>neg</sup>CD38<sup>+</sup>. Using this new phenotype, we now determined whether alterations occur in the frequency of natural CD62L<sup>+</sup>Foxp3<sup>+</sup> Treg or mucosally-imprinted CD62L<sup>neg</sup>CD38<sup>+</sup>Foxp3<sup>+</sup> Treg in peripheral blood of CD patients. In particular, we compared pediatric CD, aiming to select for disease at onset, with adult CD.</p><p>Methods</p><p>Cell surface markers, intracellular Foxp3 and Helios were determined by flow cytometry. Foxp3 expression was also detected by immunohistochemistry in duodenal tissue of CD patients.</p><p>Results</p><p>In children, the percentages of peripheral blood CD4<sup>+</sup>Foxp3<sup>+</sup> Treg were comparable between CD patients and healthy age-matched controls. Differentiation between natural and mucosally-imprinted Treg on the basis of CD62L and CD38 did not uncover differences in Foxp3. In adult patients on gluten-free diet and in refractory CD increased percentages of circulating natural CD62L<sup>+</sup>Foxp3<sup>+</sup> Treg, but normal mucosally-imprinted CD62L<sup>neg</sup>CD38<sup>+</sup>Foxp3<sup>+</sup> Treg frequencies were observed.</p><p>Conclusions</p><p>Our data exclude that significant numeric deficiency of mucosally-imprinted or natural Foxp3<sup>+</sup> Treg explains exuberant effector responses in CD. Changes in natural Foxp3<sup>+</sup> Treg occur in a subset of adult patients on a gluten-free diet and in refractory CD patients.</p></div
    corecore