588 research outputs found

    A dichotomy in group II Herbig disks: ALMA gas disk height measurements show both shadowed large vertically extended disks and compact flat disks

    Full text link
    Herbig stars can be classified into group I and group II depending on the shape of the far-IR excess from the spectral energy distribution. This separation may be evolutionary and related to the vertical structure of these disks. We aim to determine the emission height of Herbig disks and compare the resulting vertical extent of both groups. ALMA Band 6 observations of 12CO emission lines at sufficient velocity and spatial resolution of eight Herbig disks (four group I and four group II sources) are used to determine the emission heights from the channel maps via geometrical methods developed in other works. We find that all group I disks are vertically extended with a height to radius ratio of at least 0.25, and for three of the disks the gas emission profile can be traced out to 200-500 au. The group II disks are divided between MWC 480 and HD 163296 which have similar emission height profiles as the group I disks, and AK Sco and HD 142666 which are very flat (not exceeding a height of 10 au) and more compact (<200 au in size). The brightness temperatures show no differences between the disks when the luminosity of the host star is accounted for. Our findings agree with previous work suggesting that group I disks are vertically extended and that group II disks are either large and self-shadowed or compact. Both MWC 480 and HD 163296 could be precursors of group I disks, which we see now before a cavity has formed that would allow irradiation of the outer parts of the disk. The very flat disks AK Sco and HD 142666 could be due to significant settling because of the advanced age of these disks (~20 instead of <10 Myr). These large differences in vertical structures are not reflected in the spectral energy distributions of these disks. More and deeper observations at higher spatial and velocity resolution are necessary to further characterize the Herbig sub-groups.Comment: Accepted for publication in Astronomy and Astrophysics. 8 pages, 4 figures, plus appendice

    Tunable Raman photons in singly charged p

    Full text link

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Polarization-correlated photon pairs from a single ion

    Full text link
    In the fluorescence light of a single atom, the probability for emission of a photon with certain polarization depends on the polarization of the photon emitted immediately before it. Here correlations of such kind are investigated with a single trapped calcium ion by means of second order correlation functions. A theoretical model is developed and fitted to the experimental data, which show 91% probability for the emission of polarization-correlated photon pairs within 24 ns.Comment: 8 pages, 9 figure

    Optimización de sistemas lineales usando métodos de punto interior

    Get PDF
    La técnica de optimización denominada puntos interiores evoluciona por el interior de la región factible a diferencia del método SIMPLEX que evoluciona por sus puntos extremos, disminuyendo considerablemente el tiempo de solución de los problemas. En problemas de optimización no lineal de gran tamaño, las técnicas existentes para su solución deben resolver muchos problemas de programación lineal (PL) sucesivos, cada uno de los cuales requiere de gran tiempo de procesamiento. Este artículo presenta un método alternativo denominado punto interior aplicable a esta clase de problemas, con el propósito de disminuir los tiempos de procesamiento

    Brewer-OMI validation: a brief tutorial

    Get PDF
    Presentación realizada en: Brewer Ozone Spectrophotometer/Metrology Open Workshop, celebrado en Ponta Delgada (Sao Miguel, Azores) del 17 al 20 de mayo de 2016
    corecore