85 research outputs found

    Tentacle probe sandwich assay in porous polymer monolith improves specificity, sensitivity and kinetics

    Get PDF
    Nucleic acid sandwich assays improve low-density array analysis through the addition of a capture probe and a specific label, increasing specificity and sensitivity. Here, we employ photo-initiated porous polymer monolith (PPM) as a high-surface area substrate for sandwich assay analysis. PPMs are shown to enhance extraction efficiency by 20-fold from 2 μl of sample. We further compare the performance of labeled linear probes, quantum dot labeled probes, molecular beacons (MBs) and tentacle probes (TPs). Each probe technology was compared and contrasted with traditional hybridization methods using labeled sample. All probes demonstrated similar sensitivity and greater specificity than traditional hybridization techniques. MBs and TPs were able to bypass a wash step due to their ‘on–off’ signaling mechanism. TPs demonstrated reaction kinetics 37.6 times faster than MBs, resulting in the fastest assay time of 5 min. Our data further indicate TPs had the most sensitive detection limit (<1 nM) as well as the highest specificity (>1 × 104 improvement) among all tested probes in these experiments. By matching the enhanced extraction efficiencies of PPM with the selectivity of TPs, we have created a format for improved sandwich assays

    α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Get PDF
    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases

    Genome Evolution of a Tertiary Dinoflagellate Plastid

    Get PDF
    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata

    Spare PRELI Gene Loci: Failsafe Chromosome Insurance?

    Get PDF
    LEA (late embryogenesis abundant) proteins encode conserved N-terminal mitochondrial signal domains and C-terminal (A/TAEKAK) motif repeats, long-presumed to confer cell resistance to stress and death cues. This prompted the hypothesis that LEA proteins are central to mitochondria mechanisms that connect bioenergetics with cell responses to stress and death signaling. In support of this hypothesis, recent studies have demonstrated that mammalian LEA protein PRELI can act as a biochemical hub, which upholds mitochondria energy metabolism, while concomitantly promoting B cell resistance to stress and induced death. Hence, it is important to define in vivo the physiological relevance of PRELI expression.Given the ubiquitous PRELI expression during mouse development, embryo lethality could be anticipated. Thus, conditional gene targeting was engineered by insertion of flanking loxP (flox)/Cre recognition sites on PRELI chromosome 13 (Chr 13) locus to abort its expression in a tissue-specific manner. After obtaining mouse lines with homozygous PRELI floxed alleles (PRELI(f/f)), the animals were crossed with CD19-driven Cre-recombinase transgenic mice to investigate whether PRELI inactivation could affect B-lymphocyte physiology and survival. Mice with homozygous B cell-specific PRELI deletion (CD19-Cre/Chr13 PRELI(-/-)) bred normally and did not show any signs of morbidity. Histopathology and flow cytometry analyses revealed that cell lineage identity, morphology, and viability were indistinguishable between wild type CD19-Cre/Chr13 PRELI(+/+) and CD19-Cre/Chr13 PRELI(-/-) deficient mice. Furthermore, B cell PRELI gene expression seemed unaffected by Chr13 PRELI gene targeting. However, identification of additional PRELI loci in mouse Chr1 and Chr5 provided an explanation for the paradox between LEA-dependent cytoprotection and the seemingly futile consequences of Chr 13 PRELI gene inactivation. Importantly, PRELI expression from spare gene loci appeared ample to surmount Chr 13 PRELI gene deficiency.These findings suggest that PRELI is a vital LEA B cell protein with failsafe genetics

    Changes over time in characteristics, resource use and outcomes among ICU patients with COVID-19-A nationwide, observational study in Denmark

    Get PDF
    BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID‐19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID‐19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID‐19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID‐19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID‐19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID‐19 in Denmark, a lower proportion of hospitalised patients with COVID‐19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level

    Vital function of PRELI and essential requirement of its LEA motif

    Get PDF
    Proteins containing the late embryogenesis abundant (LEA) motif comprise a conserved family, postulated to act as cell protectors. However, their function and mechanisms of action remain unclear. Here we show that PRELI, a mammalian LEA-containing homolog of yeast Ups1p, can associate with dynamin-like GTPase Optic Atrophy-1 (OPA1) and contribute to the maintenance of mitochondrial morphology. Accordingly, PRELI can uphold mitochondrial membrane potential (ΔΨm) and enhance respiratory chain (RC) function, shown by its capacity to induce complex-I/NADH dehydrogenase and ATP synthase expression, increase oxygen consumption and reduce reactive oxygen species (ROS) production. PRELI can also inhibit cell death induced by STS, TNF-α or UV irradiation. Moreover, in vitro and in vivo dominant-negative overexpression of mutant PRELI/LEA− (lacking the LEA motif) and transient in vitro PRELI-specific knockdown can render lymphocytes vulnerable to apoptosis, cause mouse embryo lethality and revert the resistance of lymphoma cells to induced death. Collectively, these data support the long-presumed notion of LEA protein-dependent mechanisms of cytoprotection and suggest that PRELI interacts with OPA1 to maintain mitochondria structures intact, sustain balanced ion−/proton+ gradients, promote oxidative phosphorylation reactions, regulate pro- and antiapoptotic protein traffic and enable cell responses to induced death. These findings may help to understand how bioenergetics is mechanistically connected with cell survival cues

    Multigene Phylogeny of Choanozoa and the Origin of Animals

    Get PDF
    Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals

    Genome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates

    Get PDF
    When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates
    corecore