59 research outputs found
An explicit formula for the Berezin star product
We prove an explicit formula of the Berezin star product on Kaehler
manifolds. The formula is expressed as a summation over certain strongly
connected digraphs. The proof relies on a combinatorial interpretation of
Englis' work on the asymptotic expansion of the Laplace integral.Comment: 19 pages, to appear in Lett. Math. Phy
On a formula of Gammelgaard for Berezin-Toeplitz quantization
We give a proof of a slightly refined version of Gammelgaard's graph
theoretic formula for Berezin-Toeplitz quantization on (pseudo-)Kaehler
manifolds. Our proof has the merit of giving an alternative approach to
Karabegov-Schlichenmaier's identification theorem. We also identify the dual
Karabegov-Bordemann-Waldmann star product.Comment: 18 page
Balanced metrics on Cartan and Cartan-Hartogs domains
This paper consists of two results dealing with balanced metrics (in S.
Donaldson terminology) on nonconpact complex manifolds. In the first one we
describe all balanced metrics on Cartan domains. In the second one we show that
the only Cartan-Hartogs domain which admits a balanced metric is the complex
hyperbolic space. By combining these results with those obtained in [13]
(Kaehler-Einstein submanifolds of the infinite dimensional projective space, to
appear in Mathematische Annalen) we also provide the first example of complete,
Kaehler-Einstein and projectively induced metric g such that is not
balanced for all .Comment: 11 page
Infinitesimal deformations of a formal symplectic groupoid
Given a formal symplectic groupoid over a Poisson manifold ,
we define a new object, an infinitesimal deformation of , which can be
thought of as a formal symplectic groupoid over the manifold equipped with
an infinitesimal deformation of the Poisson bivector
field . The source and target mappings of a deformation of are
deformations of the source and target mappings of . To any pair of natural
star products having the same formal symplectic groupoid
we relate an infinitesimal deformation of . We call it the deformation
groupoid of the pair . We give explicit formulas for the
source and target mappings of the deformation groupoid of a pair of star
products with separation of variables on a Kaehler- Poisson manifold. Finally,
we give an algorithm for calculating the principal symbols of the components of
the logarithm of a formal Berezin transform of a star product with separation
of variables. This algorithm is based upon some deformation groupoid.Comment: 22 pages, the paper is reworked, new proofs are adde
Balanced metrics on homogeneous vector bundles
Let be a holomorphic vector bundle over a compact Kaehler
manifold and let be its
decomposition into irreducible factors. Suppose that each admits a
-balanced metric in Donaldson-Wang terminology. In this paper we prove
that admits a unique -balanced metric if and only if
for all , where denotes
the rank of and . We apply our result to the case
of homogeneous vector bundles over a rational homogeneous variety
and we show the existence and rigidity of balanced Kaehler embedding from into Grassmannians.Comment: 5 page
Weighted Bergman kernels and virtual Bergman kernels
We introduce the notion of "virtual Bergman kernel" and apply it to the
computation of the Bergman kernel of "domains inflated by Hermitian balls", in
particular when the base domain is a bounded symmetric domain.Comment: 12 pages. One-hour lecture for graduate students, SCV 2004, August
2004, Beijing, P.R. China. V2: typo correcte
Wigner transform and pseudodifferential operators on symmetric spaces of non-compact type
We obtain a general expression for a Wigner transform (Wigner function) on
symmetric spaces of non-compact type and study the Weyl calculus of
pseudodifferential operators on them
Berezin quantization of homogeneous bounded domains
We prove that a homogeneous bounded domain admits a Berezin quantization
Felix Alexandrovich Berezin and his work
This is a survey of Berezin's work focused on three topics: representation
theory, general concept of quantization, and supermathematics.Comment: LaTeX, 27 page
- …