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Abstract We study the connection between the weighted Bergman kernel and the
Green’s function on a domain W ⊂ C for which the Green’s function exists.
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1 Introduction

The Bergman kernel (see for instance [1,7–9,14,18]) has become a very important
tool in geometric function theory, both in one and several complex variables. It turns
out that not only the classical Bergman kernel, but also the weighted one can be useful
(see [4,5,11] for applications in quantum field theory). Let W ⊂ C be a domain (i.e.,
a connected, open set) such that the Bergman space L2

H (W ) is a non-zero space and
GW the classical Green’s function of W (let us recall that GW exists if C\W is not
polar, and this is only if L2

H (W ) �= 0—see [3,10]).
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It is known, in the classical case, that

KW (z, w) = − 2

π

∂2

∂z∂w
GW (z, w)

(see [19]) for z, w ∈ W, z �= w (it was originally proved in [2]with additional assump-
tions on ∂W ). On the other hand, if ∂W consists of a finite number of Jordan curves,
ρ(z) is a positive continuously differentiable function of x and y on a neighborhood
of W , KW, ρ(z, w) a weighted Bergman kernel of the space L2

H (W, ρ) and GW, ρ the

Green’s function for an operator Pρ = ∂

∂z

1

ρ(z)

∂

∂z
, then

KW, ρ(z, w) = − 2

πρ(z)ρ(w)

∂2

∂z∂w
GW, ρ(z, w)

(see [6]). A very natural question is: “can we relax the regularity of ∂W?”. In this
paper we prove that the connection above holds for any domain W ⊂ C, for which
L2
H (W ) �= 0 (any bounded domain share this property) and for weights ρ such that

log ρ is harmonic. The generalization is not straightforward, since we need to find the
connection between a classical Green function and GW, ρ . We shall begin with the
definitions and basic facts used in this paper. Additionally, because we are dealing
with the weighted Bergman kernels, we will recall for which weights in general the
weighted Bergman kernel exists (although we are working here with differentiable
weights only).

2 Definitions and Notation

Let W ⊂ C be a domain, and let W(W ) be the set of weights on W , i.e., W(W )

is the set of all Lebesque measurable, real-valued, positive functions μ on W (we
consider two weights as equivalent if they are equal almost everywhere with respect
to the Lebesque measure on W ). For μ ∈ W(W ) we denote by L2(W, μ) the space
of all Lebesque measurable, complex-valued, μ-square integrable functions on W ,
equipped with the norm || · ||W,μ := || · ||μ and given by the scalar product

〈 f |g〉μ :=
∫
W

f (z)g(z)μ(z)dV, f, g ∈ L2(W, μ).

The space L2
H (W, μ) = O(W ) ∩ L2(W, μ) is called the weighted Bergman space,

where O(W ) denotes the space of all holomorphic functions on the domain W . For
any z ∈ W we define the evaluation functional Ez on L2

H (W, μ) by the formula

Ez f := f (z), f ∈ L2
H (W, μ).

Let us recall the definition (Definition 2.1) of admissible weight given in [13].
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Definition 2.1 (Admissible weight) A weight μ ∈ W(W ) is called an admissible
weight, an a-weight for short, if L2

H (W, μ) is a closed subspace of L2(W, μ) and for
any z ∈ W , the evaluation functional Ez is continuous on L2

H (W, μ). The set of all
a-weights on W will be denoted by AW(W ).

The definition of admissible weight provides us with existence and uniqueness of
the related Bergman kernel and completeness of the space L2

H (W, μ). The concept of
a-weight was introduced in [12], and in [13] several theorems concerning admissible
weights are proved. An illustrative result is:

Theorem 2.2 [13, Corollary 3.1] Let μ ∈ W(W ). If the function μ−a is locally
integrable on W for some a > 0 then μ ∈ AW(W ).

Now, let us fix a point t ∈ W and minimize the norm || f ||μ in the class Et = { f ∈
L2
H (W, μ); f (t) = 1}. It can be proved, in a fashion similar to the classical case, that

if μ is an admissible weight then there exists exactly one function minimizing the
norm. Let us denote it by φμ(z, t). The weighted Bergman kernel function KW, μ is
defined as follows:

KW, μ(z, t) = φμ(z, t)

||φμ||2μ
.

3 From the Unweighted to the Weighted Case

Let us recall that we are working with a domain W ⊂ C, for which L2
H (W ) �= 0 (any

bounded domain has this property). We define the Green’s function GW, ρ as the limit
in C2(W ) of the sequence {GWj , ρ j }∞j=0, for an arbitrary exhaustion {Wj } of W by
domains with the boundary consisting of a finite number of smooth Jordan curves,
and for ρ j = ρ|Wj . We are assuming here that the limit exists and is independent of
the exhaustion. Now we will use the result from [19] to prove the following

Theorem 3.1 If ρ(z) = |μ(z)|2, where μ ∈ O(W ), and has no zeros on W, then

KW, ρ(z, w) = − 2

πρ(z)ρ(w)

∂2

∂z∂w
GW, ρ(z, w).

Proof It is well known that any domain W ⊂ C may be written as

W =
∞⋃
j=1

Wj , W1 � W2 � W3 � . . . ,

where ∂Wj consists of a finite number of smooth Jordan curves (we do not assume
any regularity of ∂W ), for any j ∈ N. Let ρ j (z) = |μ j (z)|2 where μ j = μ|Wj . One
can find in ([6], p. 494) that

GWj , ρ j (z, w) = μ j (z)μ j (w)GWj (z, w),
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which in the limit j → ∞ yields

GW, ρ(z, w) = μ(z)μ(w)GW (z, w)

(it is a standard fact that GWj converges in C2(W ) to GW ). Moreover (by a standard
calculation)

∂2GW, ρ(z, w)

∂z∂w
= μ(z)μ(w)

∂2GW (z, w)

∂z∂w
.

Let us note that L2
H (W, |μ|2) = L2

H (W ) �= 0. Multiplication by μ is a unitary map
from the L2

H (W, |μ|2) onto L2
H (W ), so

μ(z)μ(w)KW, ρ(z, w) = KW (z, w),

because the image of a reproducing kernel by a unitary map is the corresponding
reproducing kernel in the target space (this may be also seen by using the com-
plete orthonormal system {ϕk(·)} in L2

H (W ) to express KW and {ϕk(·)/μ(·)} in
L2
H (W, |μ|2) to express KW, ρ(z, w)). Now Theorem 3.1 follows from the result in

[19]. 
�

3.1 Non-Holomorphic Weights

On closer scrutiny, the crucial thing in the proof of Theorem 3.1 was to relate the
weighted Green’s function to the unweighted one. However, that was possible since
holomorphicity of μ allowed us to find a “bridge” between Green’s functions. This
relationship turns out to be preserved even if we relax the assumption about holomor-
phicity of the weight. We will do some reduction which transforms the problem to
solving some PDE. It turns out to be possible if only log ρ is harmonic, as the following
reveals.

Theorem 3.2 If ρ(z) = |μ(z)|2, where log ρ is harmonic on a neighborhood of W
(and μ has no zeros on W ) then

KW, ρ(z, w) = − 2

πρ(z)ρ(w)

∂2

∂z∂w
GW, ρ(z, w).

Proof Let {Wj }∞j=1 be an exhaustion of W and ρ j = |μ j |2 where μ j = μ|Wj . The
crucial thing is to find g j (z) such that u j (w) = g j (w)Uj (w) is a general solution of
the equation

∂

∂w

1

ρ j (w)

∂

∂w
u j (w) = 0,
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and Uj (w) is (an arbitrary) complex and harmonic function on Wj (we define g on
the same way by means of Pρ). Thus

0 = ∂

∂w

1

ρ j (w)

∂

∂w
u j (w) = ∂

∂w

1

μ jμ j

∂

∂w
(g j (w)Uj (w))

= ∂

∂w

(
1

μ jμ j

∂g j

∂w
Uj

)
+ ∂

∂w

(
1

μ jμ j
g j

∂Uj

∂w

)

=
(

∂

∂w

1

μ jμ j

)
∂g j

∂w
Uj + 1

μ jμ j

(
∂2g j

∂w∂w
Uj + ∂g j

∂w

∂Uj

∂w

)
+

(
∂

∂w

1

μ jμ j

)
g j

∂Uj

∂w

+ 1

μ jμ j

⎛
⎜⎜⎝∂g j

∂w

∂Uj

∂w
+ g j

∂2Uj

∂w∂w︸ ︷︷ ︸
0

⎞
⎟⎟⎠

Thus ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
∂

∂w

1

μ jμ j

)
∂g j

∂w
+ 1

μ jμ j

∂2g j

∂w∂w
= 0

∂g j

∂w
= 0(

∂

∂w

1

μ jμ j

)
g j + 1

μ jμ j

∂g j

∂w
= 0


�
Remark 3.3 By the equation above, g j is an antiholomorphic function.

Examining the system above, we see that the first equation is a consequence of the
second one. Let us focus on the third one:

(
∂

∂w

1

μ jμ j

)
g j + 1

μ jμ j

∂g j

∂w
= 0.

It may be written in the form

1

g j

∂g j

∂w
= 1

μ jμ j

∂

∂w
(μ jμ j )

Thus, for a given μ j , there is a function g j which must satisfy:

⎧⎪⎨
⎪⎩

1

g j

∂g j

∂w
= 1

μ jμ j

∂

∂w
(μ jμ j )

∂g j

∂w
= 0

Notice that, if μ j is holomorphic and g j = μ j , then the system above is satisfied (in
this case we get the result of [6]). We may proceed to get the exact form of g j (z),
namely:
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∂

∂w
log g j = ∂

∂w
log(μ jμ j ),

log g j = log(μ jμ j ) + h j (w),

g j (w) = μ jμ j e
h j (w) = |μ j (w)|2eh j (w),

where h j ∈ O(Wj ). Since the g j need to be antiholomorphic, h j is not an arbitrary
holomorphic function. Let us proceed to get the exact form of h j .

0 = ∂g j

∂w
= ∂

∂w
(μ jμ j )e

h j + μ jμ j e
h j

∂h j

∂w
,

0 = ∂

∂w
(μ jμ j ) + μ jμ j

∂h j

∂w
.

So
h j (w) = − log |μ j |2 + l j (w)

where l j is antiholomorphic. Taking
∂2

∂w∂w
we see that log |μ j | must be harmonic.

Take l j (w) = h j (w) + log |μ j |2 + 2iIm h j (w). So

0 = ∂

∂w
(h j (w) + log |μ j |2 + 2iIm h j (w)) = ∂

∂w
log |μ j |2 + 2i

∂

∂w
Im h j (w))

By
∂

∂w
= 1

2

(
∂

∂x
− i

∂

∂y

)
we see that

⎧⎪⎨
⎪⎩

1

2

∂

∂x
log |μ j |2 + ∂

∂y
Im h j (w) = 0

−1

2

∂

∂y
log |μ j |2 + ∂

∂x
Im h j (w) = 0

Write
∫
log |μ j (w)|dy = Fj (x, y) + c(x), where w = x + iy and ∂

∂y Fj (x, y) =
log |μ j (w)|2. Since log |μ j |2 is harmonic, we have

∂

∂y
�Fj = 0

or just �Fj = d j (x), where d j is some differentiable function of x only. Thus

Im h j (w) = −1

2

∂

∂x
Fj + 1

2
e j (x)

where
∫
d j (x)dx = e j (x) + c(y). We may easily check that Im h j (w) is harmonic.

To this end,

h j (w) = −1

2
log |μ j |2 + i

(
−1

2

∂

∂x
Fj + 1

2
e j (x)

)



The Weighted Bergman Kernel and the Green’s Function 223

where ∂
∂y Fj (x, y) = log |μ j (w)|2, and e′

j (x) = d j (x).
Thus

g j (z) = |μ j (z)|2eh j (z),

where h j is given above. Now, by the definition of μ j we have that g j → g =
|μ(z)|2eh(z), where

h(w) = −1

2
log |μ|2 + i

(
−1

2

∂

∂x
F + 1

2
e(x)

)

and by Harnack’s theorem log |μ| is harmonic.
Again (as in [6])

GWj , ρ j (z, w) = g j (z)g j (w)GWj (z, w),

so

∂2GWj , ρ j (z, w)

∂z∂w
= g j (z)g j (w)

∂2GWj (z, w)

∂z∂w
.

By the regularity of any ∂Wj we have

KWj , ρ j (z, w) = − 2

πρ j (z)ρ j (w)

∂2

∂z∂w
GWj , ρ j (z, w),

which in the limit as j → ∞ yields

KW, ρ(z, w) = − 2

πρ(z)ρ(w)
g(z)g(w)

∂2

∂z∂w
GW (z, w)

= − 2

πρ(z)ρ(w)

∂2GW, ρ(z, w)

∂z∂w
.

(we made use of the result in [20] for the LHS of the above).

4 Remarks and Some Applications

One could try the “reduction” used in the proof above to find a connection between the
classical Green’s function and the Green’s function of some other differential operator
of elliptic type.

It is well established that weighted Bergman spaces are both intrinsically interesting
and a powerful analytic tool. Our purpose in this paper has been to develop this set of
ideas, and particularly the connection between the Bergman kernel and the Green’s
function in the weighted context. Some of the applications might be:
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(a) With the established connection between weighted Bergman kernel and Green’s
function in hand, we can reformulate the weighted version of the so called “small
conjecture” (Is the so called Skwarczyński distance equivalent to the Bergman
distance?—see [16,17]) as:

Remark 4.1 AssumeW � C, and μ is a continuously differentiable function of x and
y on a neighborhood of W . Then tn → t ∈ ∂W represents defective evaluation (see
[17]) iff

− 2

πρ(z)ρ(w)

∂2

∂z∂w
GW, ρ(z, w)(·, tn) → γ

weakly in L2
H (W, μ) and

− 2

πρ(z)ρ(w)

∂2

∂z∂w
GW, ρ(z, w)(tn, tn) → κ2

where ||γ || �= κ . This is important, since the involved so-called Skwarczyński distance
is biholomorphically invariant, and given more explicitly than the Bergman distance.

(b) Using the method of alternating projections (see [15]), we can recover (having
some Dirichlet and Neuman boundary conditions on GW ) GW,μ for an arbitrary
domain W lying in C.
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16. Skwarczyński,M.:Biholomorphic invariants related to theBergman function.Warsaw,PolishScientific
Publishing Company: Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 173 (1980)
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