611 research outputs found

    The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs

    Get PDF
    We present radial velocity (RV) measurements of our sample of 40 M dwarfs from our planet search programme with VLT+UVES begun in 2000. Although with our RV precision down to 2 - 2.5 m/s and timebase line of up to 7 years, we are capable of finding planets of a few Earth masses in the close-in habitable zones of M dwarfs, there is no detection of a planetary companion. To demonstrate this we present mass detection limits allowing us to exclude Jupiter-mass planets up to 1 AU for most of our sample stars. We identified 6 M dwarfs that host a brown dwarf or low-mass stellar companion. With the exception of these, all other sample stars show low RV variability with an rms < 20 m/s. Some high proper motion stars exhibit a linear RV trend consistent with their secular acceleration. Furthermore, we examine our data sets for a possible correlation between RVs and stellar activity as seen in variations of the Halpha line strength. For Barnard's star we found a significant anticorrelation, but most of the sample stars do not show such a correlation.Comment: 13 pages, 12 figures, 5 tables, accepted by A&

    A probable close brown dwarf companion to GJ 1046 (M2.5V)

    Get PDF
    Context. Brown dwarf companions to stars at separations of a few AU or less are rare objects, and none have been found so far around early-type M dwarfs M0V-M5V). With GJ 1046 (M2.5V), a strong candidate for such a system with a separation of 0.42 AU is presented. Aims. We aim at constraining the mass of the companion in order to decide whether it is a brown dwarf or a low-mass star. Methods. We employed precision RV measurements to determine the orbital parameters and the minimum companion mass. We then derived an upper limit to the companion mass from the lack of disturbances of the RV measurements by a secondary spectrum. An even tighter upper limit is subsequently established by combining the RV-derived orbital parameters with the recent new version of the Hipparcos Intermediate Astrometric Data. Results. For the mass of the companion, we derive m>26.9 MJup from the RV data. Based on the RV data alone, the probability that the companion exceeds the stellar mass threshold is just 6.2%. The absence of effects from the secondary spectrum lets us constrain the companion mass to m <229 MJup. The combination of RV and Hipparcos data yields a 3sigma upper mass limit to the companion mass of 112 MJup with a formal optimum value at m=47.2 MJup. From the combination of RV and astrometric data, the chance probability that the companion is a star is 2.9%. Conclusions. We have found a low-mass, close companion to an early-type M dwarf. While the most likely interpretation of this object is that it is a brown dwarf, a low-mass stellar companion is not fully excluded.Comment: Accepted by A&A, 6 pages, 3 figures with 4 jpg files (Fig. 3 has two panels), original version replaced as sidecaption in Figure 1 did not work. Changes in 2nd replacement: (1) Conclusions: 99.9% --> 99.73% . (2) one sentence below: the the --> the . (3) References: Joergens, V., M\"uller, A.. 2007. ApJL, in press --> ... A., 2007, ApJ 666, L11

    An m sin i = 24 Earth Mass Planetary Companion To The Nearby M Dwarf GJ 176

    Full text link
    We report the detection of a planetary companion with a minimum mass of m sin i = 0.0771 M_Jup = 24.5 M_Earth to the nearby (d = 9.4 pc) M2.5V star GJ 176. The star was observed as part of our M dwarf planet search at the Hobby-Eberly Telescope (HET). The detection is based on 5 years of high-precision differential radial velocity (RV) measurements using the High-Resolution-Spectrograph (HRS). The orbital period of the planet is 10.24 d. GJ 176 thus joins the small (but increasing) sample of M dwarfs hosting short-periodic planets with minimum masses in the Neptune-mass range. Low mass planets could be relatively common around M dwarfs and the current detections might represent the tip of a rocky planet population.Comment: 13 pages preprint, 3 figures, submitted to Ap

    A Dedicated M-Dwarf Planet Search Using The Hobby-Eberly Telescope

    Full text link
    We present first results of our planet search program using the 9.2 meter Hobby-Eberly Telescope (HET) at McDonald Observatory to detect planets around M-type dwarf stars via high-precision radial velocity (RV) measurements. Although more than 100 extrasolar planets have been found around solar-type stars of spectral type F to K, there is only a single M-dwarf (GJ 876, Delfosse et al. 1998; Marcy et al. 1998; Marcy et al. 2001) known to harbor a planetary system. With the current incompleteness of Doppler surveys with respect to M-dwarfs, it is not yet possible to decide whether this is due to a fundamental difference in the formation history and overall frequency of planetary systems in the low-mass regime of the Hertzsprung-Russell diagram, or simply an observational bias. Our HET M-dwarf survey plans to survey 100 M-dwarfs in the next 3 to 4 years with the primary goal to answer this question. Here we present the results from the first year of the survey which show that our routine RV-precision for M-dwarfs is 6 m/s. We found that GJ 864 and GJ 913 are binary systems with yet undetermined periods, while 5 out of 39 M-dwarfs reveal a high RV-scatter and represent candidates for having short-periodic planetary companions. For one of them, GJ 436 (rms = 20.6 m/s), we have already obtained follow-up observations but no periodic signal is present in the RV-data.Comment: 12 pages, 14 figures, accepted for publication in the Astronomical Journa

    Toward detection of terrestrial planets in the habitable zone of our closest neighbor: Proxima Centauri

    Get PDF
    The precision of radial velocity (RV) measurements to detect indirectly planetary companions of nearby stars has improved to enable the discovery of extrasolar planets in the Neptune and Super-Earth mass range. Discoveries of Earth-like planets by means of ground-based RV programs will help to determine the parameter Eta_Earth, the frequency of potentially habitable planets around other stars. In search of low-mass planetary companions we monitored Proxima Centauri (M5V) as part of our M dwarf program. In the absence of a significant detection, we use these data to demonstrate the general capability of the RV method in finding terrestrial planets. For late M dwarfs the classic liquid surface water habitable zone (HZ) is located close to the star, in which circumstances the RV method is most effective. We want to demonstrate that late M dwarfs are ideal targets for the search of terrestrial planets with the RV technique. We obtained differential RV measurements of Proxima Cen over a time span of 7 years with the UVES spectrograph at the ESO VLT. We determine upper limits to the masses of companions in circular orbits by means of numerical simulations. The RV data of Proxima Cen have a total rms scatter of 3.1 m/s and a period search does not reveal any significant signals. As a result of our companion limit calculations, we find that we successfully recover all test signals with RV amplitudes corresponding to planets with m sin i > 2 - 3 M_Earth residing inside the HZ of Proxima Cen with a statistical significance of >99%. Over the same period range, we can recover 50% of the test planets with masses of m sin i > 1.5 - 2.5 M_Earth. Based on our simulations, we exclude the presence of any planet in a circular orbit with m sin i > 1 M_Neptune at separations of a < 1 AU.Comment: 8 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system γ\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for γ\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years γ\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    Full text link
    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find previously reported trends to be smaller for Beta Hyi and not present for Alp Men. The candidate planet Eps Eri b was not detected despite our better precision. Also the planet announced for HR 4523 cannot be confirmed. Long-term trends in several of our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for the binary HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For some other stars the variations could be attributed to stellar activity. The occurrence of two Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets with periods smaller than 10 yr around solar-like stars. We have not detected a Jupiter analogue, while the detections limits for circular orbits indicate at 5 AU a sensitivity for minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.Comment: 63 pages, 24 figures (+33 online figures), 13 Tables, accepted for publication in A&A (2012-11-13
    corecore