67 research outputs found

    Systemic Immunologic Consequences of Chronic Periodontitis

    Get PDF
    Chronic periodontitis (ChP) is a prevalent inflammatory disease affecting 46% of the US population. ChP produces a profound local inflammatory response to dysbiotic oral microbiota that leads to destruction of alveolar bone and tooth loss. ChP is also associated with systemic illnesses, including cardiovascular diseases, malignancies, and adverse pregnancy outcomes. However, the mechanisms underlying these adverse health outcomes are poorly understood. In this prospective cohort study, we used a highly multiplex mass cytometry immunoassay to perform an in-depth analysis of the systemic consequences of ChP in patients before (n = 28) and after (n = 16) periodontal treatment. A high-dimensional analysis of intracellular signaling networks revealed immune system–wide dysfunctions differentiating patients with ChP from healthy controls. Notably, we observed exaggerated proinflammatory responses to Porphyromonas gingivalis–derived lipopolysaccharide in circulating neutrophils and monocytes from patients with ChP. Simultaneously, natural killer cell responses to inflammatory cytokines were attenuated. Importantly, the immune alterations associated with ChP were no longer detectable 3 wk after periodontal treatment. Our findings demarcate systemic and cell-specific immune dysfunctions in patients with ChP, which can be temporarily reversed by the local treatment of ChP. Future studies in larger cohorts are needed to test the boundaries of generalizability of our results

    HtrA1 Mediated Intracellular Effects on Tubulin Using a Polarized RPE Disease Model

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss. The protein HtrA1 is enriched in retinal pigment epithelial (RPE) cells isolated from AMD patients and in drusen deposits. However, it is poorly understood how increased levels of HtrA1 affect the physiological function of the RPE at the intracellular level. Here, we developed hfRPE (human fetal retinal pigment epithelial) cell culture model where cells fully differentiated into a polarized functional monolayer. In this model, we fine-tuned the cellular levels of HtrA1 by targeted overexpression. Our data show that HtrA1 enzymatic activity leads to intracellular degradation of tubulin with a corresponding reduction in the number of microtubules, and consequently to an altered mechanical cell phenotype. HtrA1 overexpression further leads to impaired apical processes and decreased phagocytosis, an essential function for photoreceptor survival. These cellular alterations correlate with the AMD phenotype and thus highlight HtrA1 as an intracellular target for therapeutic interventions towards AMD treatment

    Ethanol reforming in non-equilibrium plasma of glow discharge

    Full text link
    The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.Comment: 16 pages, 8 figure

    Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics

    Full text link
    A future Higgs Factory will provide improved precision on measurements of Higgs couplings beyond those obtained by the LHC, and will enable a broad range of investigations across the fields of fundamental physics, including the mechanism of electroweak symmetry breaking, the origin of the masses and mixing of fundamental particles, the predominance of matter over antimatter, and the nature of dark matter. Future colliders will measure Higgs couplings to a few per cent, giving a window to beyond the Standard Model (BSM) physics in the 1-10 TeV range. In addition, they will make precise measurements of the Higgs width, and characterize the Higgs self-coupling. This report details the work of the EF01 and EF02 working groups for the Snowmass 2021 study.Comment: 44 pages, 40 figures, Report of the Topical Group on Higgs Physics for Snowmass 2021. The first four authors are the Conveners, with Contributions from the other author

    Doing synthetic biology with photosynthetic microorganisms

    Get PDF
    The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.Peer reviewe

    A MAC Partial Proposal for IEEE 802.11s (ppt)

    No full text
    • 

    corecore