38 research outputs found

    Orexin-1 Receptor Co-Localizes with Pancreatic Hormones in Islet Cells and Modulates the Outcome of Streptozotocin-Induced Diabetes Mellitus

    Get PDF
    Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R) in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes), Goto-Kakizaki (GK, a model of type 2 diabetes) rats and in orexin-deficient (OX−/−) and wild type mice. Diabetes mellitus (DM) was induced in Wistar rats and mice by streptozotocin (STZ). At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months) after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS) and glucagon (GLU) in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001) after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001) higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX−/− animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes

    The TOBY Study. Whole body hypothermia for the treatment of perinatal asphyxial encephalopathy: A randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A hypoxic-ischaemic insult occurring around the time of birth may result in an encephalopathic state characterised by the need for resuscitation at birth, neurological depression, seizures and electroencephalographic abnormalities. There is an increasing risk of death or neurodevelopmental abnormalities with more severe encephalopathy. Current management consists of maintaining physiological parameters within the normal range and treating seizures with anticonvulsants.</p> <p>Studies in adult and newborn animals have shown that a reduction of body temperature of 3–4°C after cerebral insults is associated with improved histological and behavioural outcome. Pilot studies in infants with encephalopathy of head cooling combined with mild whole body hypothermia and of moderate whole body cooling to 33.5°C have been reported. No complications were noted but the group sizes were too small to evaluate benefit.</p> <p>Methods/Design</p> <p>TOBY is a multi-centre, prospective, randomised study of term infants after perinatal asphyxia comparing those allocated to "intensive care plus total body cooling for 72 hours" with those allocated to "intensive care without cooling".</p> <p>Full-term infants will be randomised within 6 hours of birth to either a control group with the rectal temperature kept at 37 +/- 0.2°C or to whole body cooling, with rectal temperature kept at 33–34°C for 72 hours. Term infants showing signs of moderate or severe encephalopathy +/- seizures have their eligibility confirmed by cerebral function monitoring. Outcomes will be assessed at 18 months of age using neurological and neurodevelopmental testing methods.</p> <p>Sample size</p> <p>At least 236 infants would be needed to demonstrate a 30% reduction in the relative risk of mortality or serious disability at 18 months.</p> <p>Recruitment was ahead of target by seven months and approvals were obtained allowing recruitment to continue to the end of the planned recruitment phase. 325 infants were recruited.</p> <p>Primary outcome</p> <p>Combined rate of mortality and severe neurodevelopmental impairment in survivors at 18 months of age. Neurodevelopmental impairment will be defined as any of:</p> <p>• Bayley mental developmental scale score less than 70</p> <p>• Gross Motor Function Classification System Levels III – V</p> <p>• Bilateral cortical visual impairments</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN89547571</p

    Degassing Behavior of Nanostructured Al and Its Composites

    Full text link
    The synthesis of bulk ultrafine-grained (UFG) and nanostructured Al via cryomilling can frequently require a degassing step prior to consolidation, partly due to the large surface area of the as-milled powders. The objective of this study is to investigate the effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders. This objective was accomplished by completing select experiments with Al-7.5Mg, Al-6.4 wt pct Al85Ni10La5, and Al-14.3 wt pct B4C. The interaction between Al and stearic acid was determined using thermal analysis combined with Fourier transform infrared spectroscopy (FTIR). The degassing experiments were carried out under high vacuum (10−4 to ~10−6 torr) in a range from room temperature to 400 °C, with the pressure of the released gases monitored using a digital vacuum gage. The results showed that the liberation of chemisorbed water was suppressed in cryomilled Al powders and both the chemisorbed water and stearic acid were primarily released in the form of hydrogen. It was also demonstrated that under certain conditions, a nanostructure (grain size ~100 nm) can be retained following the hot vacuum degassing of cryomilled Al

    F4 (K88) fimbrial adhesin FaeG expressed in alfalfa reduces F4+ enterotoxigenic Escherichia coli excretion in weaned piglets

    No full text
    Transgenic plants are attractive bioreactors to large-scale production of recombinant proteins because of their relatively low cost. This study reports for the first time the use of transgenic plants to reduce enterotoxigenic Escherichia coli (ETEC) excretion in its natural host species. The DNA sequence encoding the major subunit and adhesin FaeG of F4+ ETEC was transformed into edible alfalfa plants. Targeting of FaeG production to chloroplasts led to FaeG levels of up to 1% of the total soluble protein fraction of the transgenic alfalfa. Recombinant plant-produced FaeG (pFaeG) remained stable for 2 years when the plant material was dried and stored at room temperature. Intragastric immunization of piglets with pFaeG induced a weak F4-specific humoral response. Co-administration of pFaeG and the mucosal adjuvant cholera toxin (CT) enhanced the immune response against FaeG, reflected a better induction of an F4-specifie immune response. In addition, the intragastric co-administration of CT with pFaeG significantly reduced F4+ E. coli excretion following F4+ ETEC challenge as compared with pigs that had received nontransgenic plant material. In conclusion, transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against F4+ ETEC infections. (c) 2005 Elsevier Ltd. All rights reserved.status: publishe
    corecore