326 research outputs found

    Degradable polymeric materials for osteosynthesis: Tutorial

    Get PDF
    This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue

    Multicomponent Hydrogels for the Formation of Vascularized Bone-like Constructs In Vitro.

    Get PDF
    The native extracellular matrix (ECM) is a complex gel-like system with a broad range of structural features and biomolecular signals. Hydrogel platforms that can recapitulate the complexity and signaling properties of this ECM would have enormous impact in fields ranging from tissue engineering to drug discovery. Here, we report on the design, synthesis, and proof-of-concept validation of a microporous and nanofibrous hydrogel exhibiting multiple bioactive epitopes designed to recreate key features of the bone ECM. The material platform integrates self-assembly with orthogonal enzymatic cross-linking to create a supramolecular environment comprising hyaluronic acid modified with tyramine (HA-Tyr) and peptides amphiphiles (PAs) designed to promote cell adhesion (RGDS-PA), osteogenesis (Osteo-PA), and angiogenesis (Angio-PA). Through individual and co-cultures of human adipose derived mesenchymal stem cells (hAMSCs) and human umbilical vascular endothelial cells (HUVECs), we confirmed the capacity of the HA-Tyr/RGDS-PA/Osteo-PA/Angio-PA hydrogel to promote cell adhesion as well as osteogenic and angiogenic differentiation in both 2D and 3D setups. Furthermore, using immunofluorescent staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we demonstrated co-differentiation and organization of hAMSCs and HUVECs into 3D aggregates resembling vascularized bone-like constructs

    Interaction of gentamicin sulfate with alginate and consequences on the physico-chemical properties of alginate-containing biofilms

    Get PDF
    BACKGROUND: Alginate is one of the main extracellular polymeric substances (EPS) in biofilms of Cystic Fibrosis (CF) patients suffering from pulmonary infections. Gentamicin sulfate (GS) can strongly bind to alginate resulting in loss of pharmacological activity; however neither the mechanism nor its repercussion is fully understood. In this study, we investigated how GS modifies the alginate macromolecular network and its microenvironment. MATERIAL AND METHODS: Alginate gels of two different compositions (either enriched in guluronate units (G) or enriched in mannuronate units (M)) were crosslinked with Ca and exposed to GS at varying times and concentrations. The complexes formed were characterized via turbidimetry, mechanical tests, swelling assay, calorimetry techniques, nuclear magnetic resonance, Ca displacement, macromolecular probe diffusion and pH alteration. RESULTS: In presence of GS, the alginate network and its environment undergo a tremendous reorganization in terms of gel density, stiffness, diffusion property, presence and state of the water molecules. We noted that the intensity of those alterations is directly dependent on the polysaccharide motif composition (ratio M/G). CONCLUSION: Our results underline the importance of alginate as biofilm component, its pernicious role during antibiotherapy and could represent a potential macromolecular target to improve anti-infectious therapies

    Cell-seeded thermoreversible hydrogel-polyurethane composites for nucleus pulposus augmentation

    Get PDF
    Tissue engineering represents an alternative approach to the current invasive surgical procedures for the intervertebral disc (IVD) repair. The combination of injectable hydrogels and elastic biomaterials allow three-dimensional cell cultures and provide mechanical stability. In the present study a thermoreversible hyaluronan (HA) hydrogel as well as fibrin glue were mixed with polyurethane (PU) and their effect was investigated on the proliferation and differentiation of human IVD (hIVD cells) and mesenchymal stem cells (hMSCs) by in vitro and ex-vivo experiments

    Investigation of the Effect of a Diamine-Based Friction Modifier on Micropitting and the Properties of Tribofilms in Rolling-Sliding Contacts

    Get PDF
    The effect of N-Tallow-1,3-DiaminoPropane (TDP) on friction, rolling wear and micropitting has been investigated with the ultimate objective of developing lubricants with no or minimal environmental impact. A Mini Traction Machine (MTM-SLIM) has been utilised in order to generate tribofilms and observe the effect of TDP on anti-wear tribofilm formation and friction. Micropitting was induced on the surface of specimens using a MicroPitting Rig (MPR). The X-ray Photoelectron Spectroscopy (XPS) surface analytical technique has been employed to investigate the effect of TDP on the chemical composition of the tribofilm while Atomic Force Microscopy (AFM) was used to generate high resolution topographical images of the tribofilms formed on the MTM discs. Experimental and analytical results showed that TDP delays the Zinc DialkylDithioPhosphate (ZDDP) anti-wear tribofilm formation. TDP in combination with ZDDP induces a thinner and smoother anti-wear tribofilm with a modified chemical structure composed of mixed Fe/Zn (poly)phosphates. The sulphide contribution to the tribofilm and oxygen-to-phosphorous atomic concentration ratio are greater in the bulk of the tribofilm derived from a combination of TDP and ZDDP compared to a tribofilm derived from ZDDP alone. Surface analysis showed that utilising TDP effectively mitigates micropitting wear in the test conditions used in this study. Reduction of micropitting, relevant to rolling bearing applications, can be attributed to the improved running-in procedure, reduced friction, formation of a smoother tribofilm and modification of the tribofilm composition induced by TDP

    A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics

    Get PDF
    Stimuli-responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell-instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low-intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli-responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices
    • …
    corecore