93 research outputs found

    Effect of the cadmium chloride treatment on RF sputtered Cd0.6Zn0.4Te films for application in multijunction solar cells

    Get PDF
    Single phase Cd0.6 Zn 0.4Te (CdZnTe) films of 1 μm thickness were deposited by radio frequency planar magnetron sputter deposition on commercial soda lime glass samples coated with fluorine-doped tin oxide and cadmium sulphide (CdS). The stack was then treated with cadmium chloride (CdCl2) at different temperatures using a constant treatment time. The effect of the CdCl2 treatment was studied using optical, materials, and electrical characterization of the samples and compared with the as-deposited CdZnTe film with the same stack configuration. The band gap deduced from Tauc plots on the as-deposited CdZnTe thin film was 1.72 eV. The deposited film had good crystalline quality with a preferred orientation along the {111} plane. After the CdCl2 treatment, the absorption edge shifted toward longer wavelength region and new peaks corresponding to cadmium telluride (CdTe) emerged in the x-ray diffraction pattern. This suggested loss of zinc after the CdCl2 treatment. The cross sectional transmission electron microscope images of the sample treated at 400 °C and the energy dispersive elemental maps revealed the absence of chlorine along the grain boundaries of CdZnTe and residual CdTe. The presence of chlorine in the CdTe devices plays a vital role in drastically improving the device performance which was not observed in CdZnTe samples treated with CdCl2. The loss of zinc from the surface and incomplete recrystallization of the grains together with the presence of high densities of stacking faults were observed. The surface images using scanning electron microscopy showed that the morphology of the grains changed from small spherical shape to large grains formed due to the fusion of small grains with distinct grain boundaries visible at the higher CdCl2 treatment temperatures. The absence of chlorine along the grain boundaries, incomplete recrystallization and distinct grain boundaries is understood to cause the poor performance of the fabricated devices

    CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    Get PDF
    © 2018 Author(s). As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications

    Size-Tailored Physicochemical Properties of Monodisperse Polystyrene Nanoparticles and the Nanocomposites Made Thereof

    Get PDF
    The latex monodisperse polystyrene (PS) colloids are important for different advanced applications (e.g. in coating, biotechnology etc.). However, the size dependency of their structural properties that impacts the characteristics of the nanocomposites composed thereof is largely unknown. Here, monodisperse PS nanoparticles (MPNPs) are synthesized via emulsion polymerization in five sizes (50, 150, 300, 350, and 450 nm). The size of the PS MPNPs is tailored by controlling the reaction time, temperature, and amount of surfactant and initiator. The correlation between the particle size and structural properties of the PS MPNPs is established by different thermomechanical and optical characterizations. The smaller particles (50 and 150 nm) show a lower glass transition (Tg) and thermal decomposition temperature and a lower Raman peak intensity. Yet, they trigger a higher IR absorption, thanks to a larger surface area. When incorporated in a polyvinyl alcohol (PVA) matrix, the smaller particles impart the resulting nanocomposite a higher tensile strength, and elastic and storage moduli. Whereas, they decline the elongation and loss factor. The very few examples of the MPNPs incorporated polymeric nanocomposites have been unstudied from this perspective. Thus, these tangible knowledge can profit scalable production of this kind of nanocomposite materials for different applications in a cost/energy efficient manner.Peer reviewe

    Activation of JNK Signaling Mediates Amyloid-ß-Dependent Cell Death

    Get PDF
    Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood.We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that blocking caspase-dependent cell death initially blocked cell death but did not lead to a significant rescue in the adult eye. However, blocking the levels of c-Jun NH(2)-terminal kinase (JNK) signaling pathway significantly rescued the neurodegeneration phenotype of Aß42 misexpression both in eye imaginal disc as well as the adult eye. Misexpression of Aß42 induced transcriptional upregulation of puckered (puc), a downstream target and functional read out of JNK signaling. Moreover, a three-fold increase in phospho-Jun (activated Jun) protein levels was seen in Aß42 retina as compared to the wild-type retina. When we blocked both caspases and JNK signaling simultaneously in the fly retina, the rescue of the neurodegenerative phenotype is comparable to that caused by blocking JNK signaling pathway alone.Our data suggests that (i) accumulation of Aß42 plaques induces JNK signaling in neurons and (ii) induction of JNK contributes to Aß42 mediated cell death. Therefore, inappropriate JNK activation may indeed be relevant to the AD neuropathology, thus making JNK a key target for AD therapies

    Do two and three year old children use an incremental first-NP-as-agent bias to process active transitive and passive sentences? : A permutation analysis

    Get PDF
    We used eye-tracking to investigate if and when children show an incremental bias to assume that the first noun phrase in a sentence is the agent (first-NP-as-agent bias) while processing the meaning of English active and passive transitive sentences. We also investi-gated whether children can override this bias to successfully distinguish active from passive sentences, after processing the remainder of the sentence frame. For this second question we used eye-tracking (Study 1) and forced-choice pointing (Study 2). For both studies, we used a paradigm in which participants simultaneously saw two novel actions with reversed agent-patient relations while listening to active and passive sentences. We compared English-speaking 25-month-olds and 41-month-olds in between-subjects sentence struc-ture conditions (Active Transitive Condition vs. Passive Condition). A permutation analysis found that both age groups showed a bias to incrementally map the first noun in a sentence onto an agent role. Regarding the second question, 25-month-olds showed some evidence of distinguishing the two structures in the eye-tracking study. However, the 25-month-olds did not distinguish active from passive sentences in the forced choice pointing task. In contrast, the 41-month-old children did reanalyse their initial first-NP-as-agent bias to the extent that they clearly distinguished between active and passive sentences both in the eye-tracking data and in the pointing task. The results are discussed in relation to the development of syntactic (re)parsing

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF
    corecore