2,053 research outputs found

    Flight Investigation of the Cooling Characteristics of a Two-row Radial Engine Installation III : Engine Temperature Distribution

    Get PDF
    The temperature distribution of a two-row radial engine in a twin-engine airplane has been investigated in a series of flight tests. The test engine was operated over a wide range of conditions at density altitudes of 5000 and 20,000 feet; quantitative results are presented showing the effects of flight and engine variables upon average engine temperature and over-all temperature spread. Discussions of the effect of the variables on the shape of the temperature patterns and on the temperature distribution of individual cylinders are also included. The results indicate that, for the tests conducted, the temperature distribution patterns were chiefly determined by the fuel-air ratio and cooling-air distributions. It was possible to calculate individual cylinder temperature, on the assumption of equal power distribution among cylinders, to within an average of plus or minus 14 degrees F. of the actual temperature. A considerable change occurred in either the spread or the thrust axis, the average engine fuel-air ratio, the engine speed, the power, or the blower ratio. Smaller effects on the temperature pattern were noticed with a change in cowl-flap opening and altitude. In most of the tests, a change in conditions affected the temperature of the barrels less than that of the heads. The variation of flight and engine variables had a negligible effect on the temperature distributions of the individual cylinders. (author

    Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging

    Full text link
    Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on single objects. In this article we report results obtained for single homogeneous and heterogeneous nanowires with a diameter smaller than 100 nm, for which we used CDI to retrieve information about deformation and faults existing in these wires. The article also discusses the influence of stacking faults, which can create artefacts during the reconstruction of the nanowire shape and deformation.Comment: 18 pages, 6 figures Submitted to New Journal of Physic

    Clinical disease activity and acute phase reactant levels are discordant among patients with active rheumatoid arthritis: acute phase reactant levels contribute separately to predicting outcome at one year

    Get PDF
    INTRODUCTION: Clinical trials of new treatments for rheumatoid arthritis (RA) typically require subjects to have an elevated acute phase reactant (APR), in addition to tender and swollen joints. However, despite the elevation of individual components of the Clinical Disease Activity Index (CDAI) (tender and swollen joint counts and patient and physician global assessment), some patients with active RA may have normal erythrocyte sedimentation rate (ESR) and/or C-reactive protein (CRP) levels and thus fail to meet entry criteria for clinical trials. We assessed the relationship between CDAI and APRs in the Consortium of Rheumatology Researchers of North America (CORRONA) registry by comparing baseline characteristics and one-year clinical outcomes of patients with active RA, grouped by baseline APR levels. METHODS: This was an observational study of 9,135 RA patients who had both ESR and CRP drawn and a visit at which CDAI was \u3e 2.8 (not in remission). RESULTS: Of 9,135 patients with active RA, 58% had neither elevated ESR nor CRP; only 16% had both elevated ESR and CRP and 26% had either ESR or CRP elevated. Among the 4,228 patients who had a one-year follow-up visit, both baseline and one-year follow-up modified Health Assessment Questionnaire (mHAQ) and CDAI scores were lowest for patients with active RA but with neither APR elevated; both mHAQ and CDAI scores increased sequentially with the increase in number of elevated APR levels at baseline. Each individual component of the CDAI followed the same trend, both at baseline and at one-year follow-up. The magnitude of improvement in both CDAI and mHAQ scores at one year was associated positively with the number of APRs elevated at baseline. CONCLUSIONS: In a large United States registry of RA patients, APR levels often do not correlate with disease activity as measured by joint counts and global assessments. These data strongly suggest that it is appropriate to obtain both ESR and CRP from RA patients at the initial visit. Requiring an elevation in APR levels as a criterion for inclusion of RA patients in studies of experimental agents may exclude some patients with active disease

    Significance of sex in achieving sustained remission in the consortium of rheumatology researchers of north america cohort of rheumatoid arthritis patients

    Full text link
    Objective To determine whether men with rheumatoid arthritis (RA) are more likely to achieve remission compared to women. Methods RA patients enrolled in the Consortium of Rheumatology Researchers of North America (CORRONA) cohort between October 2001 and January 2010 were selected for the present analyses. Detailed clinical, demographic, and drug utilization data were available at enrollment (baseline) and at subsequent followup visits. We examined the influence of sex on the Clinical Disease Activity Index remission score (≤2.8) using sustained remission or point remission as the primary outcome measure in multivariate stepwise logistic regression models. We stratified the data by RA duration at baseline (≤2 years or >2 years) to investigate whether RA duration had differential effects on remission in men and women. Results A total of 10,299 RA patients (2,406 men and 7,893 women) were available for this study. In both early and established RA, women had more severe disease at baseline with worse disease activity measures, modified Health Assessment Questionnaire disability index score, pain on a visual analog scale, and depression. Women were also more likely to have been treated with disease‐modifying antirheumatic drugs and anti–tumor necrosis factor therapy compared to men. In the regression models, male sex was associated with sustained remission in early RA (odds ratio [OR] 1.38, 95% confidence interval [95% CI] 1.07–1.78, P = 0.01), but not in established RA. However, for point remission, an inverse association was observed with male sex in established RA (OR 0.65, 95% CI 0.48–0.87, P = 0.005) and not in early RA. Conclusion Within the large real‐life CORRONA cohort of RA patients, men were more likely to achieve sustained remission compared to women in early RA, although not in established RA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94462/1/21762_ftp.pd

    CN and HCN in Dense Interstellar Clouds

    Full text link
    We present a theoretical investigation of CN and HCN molecule formation in dense interstellar clouds. We study the gas-phase CN and HCN production efficiencies from the outer photon-dominated regions (PDRs) into the opaque cosmic-ray dominated cores. We calculate the equilibrium densities of CN and HCN, and of the associated species C+, C, and CO, as functions of the far-ultraviolet (FUV) optical depth. We consider isothermal gas at 50 K, with hydrogen particle densities from 10^2 to 10^6 cm^-3. We study clouds that are exposed to FUV fields with intensities 20 to 2*10^5 times the mean interstellar FUV intensity. We assume cosmic-ray H2 ionization rates ranging from 5*10^-17 s^-1, to an enhanced value of 5*10^-16 s^-1. We also examine the sensitivity of the density profiles to the gas-phase sulfur abundance.Comment: Accepted for publication in ApJ, 33 pages, 8 figure

    Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease.

    Get PDF
    Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits
    corecore