72 research outputs found

    Scalable Noise Estimation with Random Unitary Operators

    Full text link
    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies additional information about the noise can be determined.Comment: 8 pages; v2: published version (typos corrected; reference added

    Minimax mean estimator for the trine

    Full text link
    We explore the question of state estimation for a qubit restricted to the xx-zz plane of the Bloch sphere, with the trine measurement. In our earlier work [H. K. Ng and B.-G. Englert, eprint arXiv:1202.5136[quant-ph] (2012)], similarities between quantum tomography and the tomography of a classical die motivated us to apply a simple modification of the classical estimator for use in the quantum problem. This worked very well. In this article, we adapt a different aspect of the classical estimator to the quantum problem. In particular, we investigate the mean estimator, where the mean is taken with a weight function identical to that in the classical estimator but now with quantum constraints imposed. Among such mean estimators, we choose an optimal one with the smallest worst-case error-the minimax mean estimator-and compare its performance with that of other estimators. Despite the natural generalization of the classical approach, this minimax mean estimator does not work as well as one might expect from the analogous performance in the classical problem. While it outperforms the often-used maximum-likelihood estimator in having a smaller worst-case error, the advantage is not significant enough to justify the more complicated procedure required to construct it. The much simpler adapted estimator introduced in our earlier work is still more effective. Our previous work emphasized the similarities between classical and quantum state estimation; in contrast, this paper highlights how intuition gained from classical problems can sometimes fail in the quantum arena.Comment: 18 pages, 3 figure

    Information preserving structures: A general framework for quantum zero-error information

    Get PDF
    Quantum systems carry information. Quantum theory supports at least two distinct kinds of information (classical and quantum), and a variety of different ways to encode and preserve information in physical systems. A system's ability to carry information is constrained and defined by the noise in its dynamics. This paper introduces an operational framework, using information-preserving structures to classify all the kinds of information that can be perfectly (i.e., with zero error) preserved by quantum dynamics. We prove that every perfectly preserved code has the same structure as a matrix algebra, and that preserved information can always be corrected. We also classify distinct operational criteria for preservation (e.g., "noiseless", "unitarily correctible", etc.) and introduce two new and natural criteria for measurement-stabilized and unconditionally preserved codes. Finally, for several of these operational critera, we present efficient (polynomial in the state-space dimension) algorithms to find all of a channel's information-preserving structures.Comment: 29 pages, 19 examples. Contains complete proofs for all the theorems in arXiv:0705.428

    Robust Online Hamiltonian Learning

    Get PDF
    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic

    Hamiltonian Determination with Restricted Access in Transverse Field Ising Chain

    Full text link
    We propose a method to evaluate parameters in the Hamiltonian of the Ising chain under site-dependent transverse fields, with a proviso that we can control and measure one of the edge spins only. We evaluate the eigenvalues of the Hamiltonian and the time-evoultion operator exactly for a 3-spin chain, from which we obtain the expectation values of σx\sigma_x of the first spin. The parameters are found from the peak positions of the Fourier transform of the expectation value. There are four assumptions in our method, which are mild enough to be satisfied in many physical systems.Comment: 15pages, 4 figure

    Quantum Darwinism

    Full text link
    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the fragility of a state of a single quantum system can lead to the classical robustness of states of their correlated multitude; shows how effective `wave-packet collapse' arises as a result of proliferation throughout the environment of imprints of the states of quantum system; and provides a framework for the derivation of Born's rule, which relates probability of detecting states to their amplitude. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem

    On compatibility and improvement of different quantum state assignments

    Full text link
    When Alice and Bob have different quantum knowledges or state assignments (density operators) for one and the same specific individual system, then the problems of compatibility and pooling arise. The so-called first Brun-Finkelstein-Mermin (BFM) condition for compatibility is reobtained in terms of possessed or sharp (i. e., probability one) properties. The second BFM condition is shown to be generally invalid in an infinite-dimensional state space. An argument leading to a procedure of improvement of one state assifnment on account of the other and vice versa is presented.Comment: 8 page

    Bell's Theorem from Moore's Theorem

    Full text link
    It is shown that the restrictions of what can be inferred from classically-recorded observational outcomes that are imposed by the no-cloning theorem, the Kochen-Specker theorem and Bell's theorem also follow from restrictions on inferences from observations formulated within classical automata theory. Similarities between the assumptions underlying classical automata theory and those underlying universally-unitary quantum theory are discussed.Comment: 12 pages; to appear in Int. J. General System

    Beating noise with abstention in state estimation

    Get PDF
    We address the problem of estimating pure qubit states with non-ideal (noisy) measurements in the multiple-copy scenario, where the data consists of a number N of identically prepared qubits. We show that the average fidelity of the estimates can increase significantly if the estimation protocol allows for inconclusive answers, or abstentions. We present the optimal such protocol and compute its fidelity for a given probability of abstention. The improvement over standard estimation, without abstention, can be viewed as an effective noise reduction. These and other results are exemplified for small values of N. For asymptotically large N, we derive analytical expressions of the fidelity and the probability of abstention, and show that for a fixed fidelity gain the latter decreases with N at an exponential rate given by a Kulback-Leibler (relative) entropy. As a byproduct, we obtain an asymptotic expression in terms of this very entropy of the probability that a system of N qubits, all prepared in the same state, has a given total angular momentum. We also discuss an extreme situation where noise increases with N and where estimation with abstention provides a most significant improvement as compared to the standard approach
    corecore