71 research outputs found

    The relationship between insulin binding, insulin activation of insulin-receptor tyrosine kinase, and insulin stimulation of glucose uptake in isolated rat adipocytes

    Get PDF
    We have studied the relationship between insulin activation of insulin-receptor kinase and insulin stimulation of glucose uptake in isolated rat adipocytes. Glucose uptake was half-maximally or maximally stimulated, respectively, when only 4% or 14% of the maximal kinase activity had been reached. To investigate this relationship also under conditions where the insulin effect on activation of receptor kinase was decreased, the adipocytes were exposed to 10 microM-isoprenaline alone or with 5 micrograms of adenosine deaminase/ml. An approx. 30% (isoprenaline) or approx. 50% (isoprenaline + adenosine deaminase) decrease in the insulin effect on receptor kinase activity was found at insulin concentrations between 0.4 and 20 ng/ml, and this could not be explained by decreased insulin binding. The decreased insulin-effect on kinase activity was closely correlated with a loss of insulin-sensitivity of glucose uptake. Moreover, our data indicate that the relation between receptor kinase activity and glucose uptake (expressed as percentage of maximal uptake) remained unchanged. The following conclusions were drawn. (1) If activation of receptor kinase stimulates glucose uptake, only 14% of the maximal kinase activity is sufficient for maximal stimulation. (2) Isoprenaline decreases the coupling efficiency between insulin binding and receptor-kinase activation, this being accompanied by a corresponding decrease in sensitivity of glucose uptake. (3) Our data indicate that the signalling for glucose uptake is closely related to receptor-kinase activity, even when the coupling efficiency between insulin binding and kinase activation is altered. They thus support the hypothesis that receptor-kinase activity reflects the signal which originates from the receptor and which is transduced to the glucose-transport system

    Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes

    Get PDF
    Tropical high-Andean wetlands, locally known as ‘bofedales’, are key ecosystems sustaining biodiversity, carbon sequestration, water provision and livestock farming. Bofedales' contribution to dry season baseflows and sustaining water quality is crucial for downstream water security. The sensitivity of bofedales to climatic and anthropogenic disturbances is therefore of growing concern for watershed management. This study aims to understand seasonal water storage and release characteristics of bofedales by combining remote sensing analysis and ground-based monitoring for the wet and dry seasons of late 2019 to early 2021, using the glacierised Vilcanota-Urubamba basin (Southern Peru) as a case study. A network of five ultrasound loggers was installed to obtain discharge and water table data from bofedal sites across two headwater catchments. The seasonal extent of bofedales was mapped by applying a supervised machine learning model using Random Forest on imagery from Sentinel-2 and NASADEM. We identified high seasonal variability in bofedal area with a total of 3.5% and 10.6% of each catchment area, respectively, at the end of the dry season (2020), which increased to 15.1% and 16.9%, respectively, at the end of the following wet season (2021). The hydrological observations and bofedal maps were combined into a hydrological conceptual model to estimate the storage and release characteristics of the bofedales, and their contribution to runoff at the catchment scale. Estimated lag times between 1 and 32 days indicate a prolonged bofedal flow contribution throughout the dry season (about 74% of total flow). Thus, our results suggest that bofedales provide substantial contribution to dry season baseflow, water flow regulation and storage. These findings highlight the importance of including bofedales in local water management strategies and adaptation interventions including nature-based solutions that seek to support long-term water security in seasonally dry and rapidly changing Andean catchments

    Metabarcoding of soil environmental DNA to estimate plant diversity globally

    Get PDF
    IntroductionTraditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. MethodsWe sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. ResultsLarge-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. DiscussioneDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region

    Global Geographic Distribution and Host Range of Fusarium circinatum, the Causal Agent of Pine Pitch Canker

    Get PDF
    Fusarium circinatum, the causal agent of pine pitch canker (PPC), is currently one of the most important threats of Pinus spp. globally. This pathogen is known in many pine-growing regions, including natural and planted forests, and can affect all life stages of trees, from emerging seedlings to mature trees. Despite the importance of PPC, the global distribution of F. circinatum is poorly documented, and this problem is also true of the hosts within countries that are affected. The aim of this study was to review the global distribution of F. circinatum, with a particular focus on Europe. We considered (1) the current and historical pathogen records, both positive and negative, based on confirmed reports from Europe and globally; (2) the genetic diversity and population structure of the pathogen; (3) the current distribution of PPC in Europe, comparing published models of predicted disease distribution; and (4) host susceptibility by reviewing literature and generating a comprehensive list of known hosts for the fungus. These data were collated from 41 countries and used to compile a specially constructed geo-database. A review of 6297 observation records showed that F. circinatum and the symptoms it causes on conifers occurred in 14 countries, including four in Europe, and is absent in 28 countries. Field observations and experimental data from 138 host species revealed 106 susceptible host species including 85 Pinus species, 6 non-pine tree species and 15 grass and herb species. Our data confirm that susceptibility to F. circinatum varies between different host species, tree ages and environmental characteristics. Knowledge on the geographic distribution, host range and the relative susceptibility of different hosts is essential for disease management, mitigation and containment strategies. The findings reported in this review will support countries that are currently free of F. circinatum in implementing effective procedures and restrictions and prevent further spread of the pathogen

    Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs

    Get PDF
    International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe

    Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs

    Get PDF
    International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees
    corecore