293 research outputs found

    Cessation of X-ray Pulsation of GX 1+4

    Get PDF
    We report results from our weekly monitoring campaign on the X-ray pulsar GX 1+4 with the {\em Rossi X-ray Timing Explorer} satellite. The spin-down trend of GX 1+4 was continuing, with the pulsar being at its longest period ever measured (about 138.7 s). At the late stage of the campaign, the source entered an extended faint state, when its X-ray (2-60 keV) flux decreased significantly to an average level of 3×1010ergscm2s1\sim 3 \times 10^{-10} ergs cm^{-2} s^{-1}. It was highly variable in the faint state; the flux dropped to as low as 3×1011ergscm2s1\sim 3 \times 10^{-11} ergs cm^{-2} s^{-1}. In several observations during this period, the X-ray pulsation became undetectable. We can, therefore, conclude conservatively that the pulsed fraction, which is normally \gtrsim 70% (peak-to-peak), must have decreased drastically in those cases. This is very similar to what was observed of GX 1+4 in 1996 when it became similarly faint in X-ray. In fact, the flux at which the cessation of X-ray pulsation first occurred is nearly the same as it was in 1996. We suggest that we have, once again, observed the propeller effect in GX 1+4, a phenomenon that is predicted by theoretical models of accreting X-ray pulsars.Comment: 13 pages, 9 figures (available at http://www.physics.purdue.edu/~cui/ftp/cuifigs.tar.gz). To appear in Ap

    Evolution of Massive Haloes in non-Gaussian Scenarios

    Get PDF
    We have performed high-resolution cosmological N-body simulations of a concordance LCDM model to study the evolution of virialized, dark matter haloes in the presence of primordial non-Gaussianity. Following a standard procedure, departures from Gaussianity are modeled through a quadratic Gaussian term in the primordial gravitational potential, characterized by a dimensionless non-linearity strength parameter f_NL. We find that the halo mass function and its redshift evolution closely follow the analytic predictions of Matarrese et al.(2000). The existence of precise analytic predictions makes the observation of rare, massive objects at large redshift an even more attractive test to detect primordial non-Gaussian features in the large scale structure of the universe.Comment: 7 pages,3 figures, submitted to MNRA

    The Low-Mass X-ray Binary X1822-330 in the Globular Cluster NGC 6652: A Serendipitous ASCA Observation

    Get PDF
    The Low Mass X-ray Binary (LMXB) X1822-330 in NGC 6652 is one of 12 bright, or transient, X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1822-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT=2.4+/-0.6 keV to kT=1.0+/0.1 keV during the decay. The measured peak flux during the burst is ~10% of the Eddington luminosity for a 1.4 Msun neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1822-330.Comment: 9 pages, 5 figures, accepted for Ap

    The Radial Structure of the Cygnus Loop Supernova Remnant --- Possible evidence of a cavity explosion ---

    Get PDF
    We observed the North-East (NE) Limb toward the center region of the Cygnus Loop with the ASCA Observatory. We found a radial variation of electron temperature (kTe) and ionization timescale (log(\tau)) whereas no variation could be found for the abundances of heavy elements. In this paper, we re-analyzed the same data set and new observations with the latest calibration files. Then we constructed the precise spatial variations of kTe, log(\tau), and abundances of O, Ne, Mg, Si, and Fe over the field of view (FOV). We found a spatial variation not only in kTe and in log(\tau) but also in most of heavy elements. As described in Miyata et al. (1994), values of kTe increase and those of log(\tau) decrease toward the inner region. We found that the abundance of heavy elements increases toward the inner region. The radial profiles of O, Ne, and Fe show clear jump structures at a radius of 0.9 Rs, where Rs is the shock radius. Outside of 0.9 Rs, abundances of all elements are constant. On the contrary, inside of 0.9 Rs, abundances of these elements are 20--30 % larger than those obtained outside of 0.9 Rs. The radial profile of kTe also shows the jump structure at 0.9 Rs. This means that the hot and metal rich plasma fills the volume inside of 0.9 Rs. We concluded that this jump structure was the possible evidence for the pre-existing cavity produced by the precursor. If the ejecta fills inside of 0.9 Rs, the total mass of the ejecta was roughly 4\Msun. We then estimated the main-sequence mass to be roughly 15\Msun, which supports the massive star in origin of the Cygnus Loop supernova remnant and the existence of a pre-existing cavity.Comment: 37 pages, 14 figures. Accepted for publication of Ap

    ASCA Observations of the Starburst-Driven Superwind Galaxy NGC 2146: Broad Band (0.6 - 9 keV) Spectral Properties

    Get PDF
    We report ASCA GIS and SIS observations of the nearby (D = 11.6 Mpc), nearly edge-on, starburst galaxy NGC 2146. These X-ray spectral data complement ROSAT PSPC and HRI imaging discussed by Armus et al., 1995. The broad band (0.6-9 keV) X-ray spectrum of NGC 2146 is best described by a two component model: the soft X-ray emission with a Raymond-Smith thermal plasma model having a temperature of kT 0.8\sim 0.8 keV; the hard X-ray emission with a thermal plasma model having kT 8\sim 8 keV or a power-law model having a photon index of 1.7\sim 1.7. We do not find compelling evidence of substantial excess absorption above the Galactic value. The soft (hard) thermal component provides about 30% (70%) of the total luminosity in the 0.5 - 2.0 keV energy band, while in the 2-10 keV energy range only the hard component plays a major role. The spectral results allow us to set tighter constraints on the starburst-driven superwind model, which we show can satisfactorily account for the luminosity, mass, and energy content represented by the soft X-ray spectral component. We estimate that the mass outflow rate (\sim 9 M_{\odot} per year) is about an order of magnitude greater than the predicted rate at which supernovae and stellar winds return mass into the interstellar medium and, therefore, argue that the flow is strongly "mass-loaded" with material in and around the starburst. The estimated outflow velocity of the hot gas is close to the escape velocity from the galaxy, so the fate of the gas is not clear. We suggest that the hard X-ray spectral component is due to the combined emission of X-ray binaries and/or young supernovae remnants associated with the starburst.Comment: 26 pages plus 4 figures, LaTex manuscript, Accepted for publication in the Astrophysical Journa

    Accretion disk reversal and the spin-up/spin-down of accreting pulsars

    Full text link
    We numerically investigate the hydrodynamics of accretion disk reversal and relate our findings to the observed spin-rate changes in the accreting X-ray pulsar GX~1+4. In this system, which accretes from a slow wind, the accretion disk contains two dynamically distinct regions. In the inner part viscous forces are dominant and disk evolution occurs on a viscous timescale. In the outer part dynamical mixing of material with opposite angular momentum is more important, and the externally imposed angular momentum reversal timescale governs the flow. In this outer region the disk is split into concentric rings of material with opposite senses of rotation that do not mix completely but instead remain distinct, with a clear gap between them. We thus predict that torque reversals resulting from accretion disk reversals will be accompanied by minima in accretion luminosity.Comment: 13 pages, 7 figures, accepted for publication in Ap

    The X-ray Spectrum of the Rapid Burster using the Chandra HETGS

    Get PDF
    We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 "mini-bursts" which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.Comment: 10 pages, 4 figures, accepted for publication in AJ (with minor changes and enhanced discussion of the instrument configuration

    Broad band X-ray spectroscopy of A0535+262 with SUZAKU

    Get PDF
    The transient X-ray binary pulsar A0535+262 was observed with Suzaku on 2005 September 14 when the source was in the declining phase of the August-September minor outburst. The ~103 s X-ray pulse profile was strongly energy dependent, a double peaked profile at soft X-ray energy band (<3 keV) and a single peaked smooth profile at hard X-rays. The width of the primary dip is found to be increasing with energy. The broad-band energy spectrum of the pulsar is well described with a Negative and Positive power-law with EXponential (NPEX) continuum model along with a blackbody component for soft excess. A weak iron K_alpha emission line with an equivalent width ~25 eV was detected in the source spectrum. The blackbody component is found to be pulsating over the pulse phase implying the accretion column and/or the inner edge of the accretion disk may be the possible emission site of the soft excess in A0535+262. The higher value of the column density is believed to be the cause of the secondary dip at the soft X-ray energy band. The iron line equivalent width is found to be constant (within errors) over the pulse phase. However, a sinusoidal type of flux variation of iron emission line, in phase with the hard X-ray flux suggests that the inner accretion disk is the possible emission region of the iron fluorescence line.Comment: 21 pages, 6 figures. Accepted for publication in the Astrophysical Journal, 2008 January issu
    corecore