30 research outputs found

    Innovation Management Techniques and Tools: a review from Theory and Practice

    Get PDF
    Knowledge is considered to be an economic driver in today’s economy. It has become a commodity, a resource that can be packed and transferred. The objective of this paper is to provide a comprehensive review of the scope, trends and major actors (firms, organizations, government, consultants, academia, etc.) in the development and use of methods to manage innovation in a knowledge-driven economy. The paper identifies the main innovation management techniques (IMTs) aiming at the improvement of firm competitiveness by means of knowledge management. It will specifically focus on those IMTs for which knowledge is a relevant part of the innovation process. The research study, based on a survey at the European level, concludes that a knowledge-driven economy affects the innovation process and approach. The traditional idea that innovation is based on research (technology-push theory) and interaction between firms and other actors has been replaced by the current social network theory of innovation, where knowledge plays a crucial role in fostering innovation. Simultaneously, organizations in both public and private sectors have launched initiatives to develop methodologies and tools to support business innovation management. Higher education establishments, business schools and consulting companies are developing innovative and adequate methodologies and tools, while public authorities are designing and setting up education and training schemes aimed at disseminating best practices among all kinds of businesse

    Topological effects in ring polymers: A computer simulation study

    Full text link
    Unconcatenated, unknotted polymer rings in the melt are subject to strong interactions with neighboring chains due to the presence of topological constraints. We study this by computer simulation using the bond-fluctuation algorithm for chains with up to N=512 statistical segments at a volume fraction \Phi=0.5 and show that rings in the melt are more compact than gaussian chains. A careful finite size analysis of the average ring size R \propto N^{\nu} yields an exponent \nu \approx 0.39 \pm 0.03 in agreement with a Flory-like argument for the topologica interactions. We show (using the same algorithm) that the dynamics of molten rings is similar to that of linear chains of the same mass, confirming recent experimental findings. The diffusion constant varies effectively as D_{N} \propto N^{-1.22(3) and is slightly higher than that of corresponding linear chains. For the ring sizes considered (up to 256 statistical segments) we find only one characteristic time scale \tau_{ee} \propto N^{2.0(2); this is shown by the collapse of several mean-square displacements and correlation functions onto corresponding master curves. Because of the shrunken state of the chain, this scaling is not compatible with simple Rouse motion. It applies for all sizes of ring studied and no sign of a crossover to any entangled regime is found.Comment: 20 Pages,11 eps figures, Late
    corecore