68 research outputs found

    PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA

    Get PDF
    Nob1p (Yor056c) is essential for processing of the 20S pre-rRNA to the mature 18S rRNA. It is part of a pre-40S ribosomal particle that is transported to the cytoplasm and subsequently cleaved at the 3' end of mature 18S rRNA (D-site). Nob1p is also reported to participate in proteasome biogenesis, and it was therefore unclear whether its primary activity is in ribosome synthesis. In this work, we describe a homology model of the PIN domain of Nob1p, which structurally mimics Mg(2+)-dependent exonucleases despite negligible similarity in primary sequence. Insights gained from this model were used to design a point mutation that was predicted to abolish the postulated enzymatic activity. Cells expressing Nob1p with this mutation failed to cleave the 20S pre-rRNA. This supports both the significance of the structural model and the idea that Nob1p is the long-sought D-site endonuclease

    Curvature Induced Discontinuous Transition for Semiflexible Biopolymers

    Get PDF
    [[abstract]]We study the effect of an intrinsic curvature on the mechanical property of two-dimensional semiflexible biopolymers and find that it can induce a discontinuous transition in extension. At zero temperature, we accurately show that the extension of an intrinsically curved semiflexible biopolymer of finite length can undergo a multiple-step discontinuous transition regardless of bending rigidity. The transition is accompanied by unwinding loops, and the critical force reaches a limit quickly with decreasing number of loops so that, in the experiment, it is possible to observe the almost simultaneous opening of several loops. However, the fluctuation or configurational average at a finite temperature suppresses the sharp transition so that there is no discontinuous transition in a system of finite size. However, our results obtained from Monte Carlo simulation reveal that, at a finite temperature, the extension of a biopolymer can undergo a one-step first-order transition in the thermodynamical limit if the biopolymer has a sufficiently large bending rigidity. The critical force increases with increasing intrinsic curvature or bending rigidity.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA

    Get PDF
    Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand

    The Cis-regulatory Logic of the Mammalian Photoreceptor Transcriptional Network

    Get PDF
    The photoreceptor cells of the retina are subject to a greater number of genetic diseases than any other cell type in the human body. The majority of more than 120 cloned human blindness genes are highly expressed in photoreceptors. In order to establish an integrative framework in which to understand these diseases, we have undertaken an experimental and computational analysis of the network controlled by the mammalian photoreceptor transcription factors, Crx, Nrl, and Nr2e3. Using microarray and in situ hybridization datasets we have produced a model of this network which contains over 600 genes, including numerous retinal disease loci as well as previously uncharacterized photoreceptor transcription factors. To elucidate the connectivity of this network, we devised a computational algorithm to identify the photoreceptor-specific cis-regulatory elements (CREs) mediating the interactions between these transcription factors and their target genes. In vivo validation of our computational predictions resulted in the discovery of 19 novel photoreceptor-specific CREs near retinal disease genes. Examination of these CREs permitted the definition of a simple cis-regulatory grammar rule associated with high-level expression. To test the generality of this rule, we used an expanded form of it as a selection filter to evolve photoreceptor CREs from random DNA sequences in silico. When fused to fluorescent reporters, these evolved CREs drove strong, photoreceptor-specific expression in vivo. This study represents the first systematic identification and in vivo validation of CREs in a mammalian neuronal cell type and lays the groundwork for a systems biology of photoreceptor transcriptional regulation

    Regulation of the DNA Damage Response and Gene Expression by the Dot1L Histone Methyltransferase and the 53Bp1 Tumour Suppressor

    Get PDF
    Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined.Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line.Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin

    3D models of yeast RNase P/MRP proteins Rpp1p and Pop3p

    No full text
    corecore