195 research outputs found

    The substantia Nigra pars compacta and temporal processing

    Get PDF
    The basal ganglia and cerebellum are considered to play a role in timing, although their differential roles in timing remain unclear. It has been proposed that the timing of short milliseconds-range intervals involves the cerebellum, whereas longer seconds-range intervals engage the basal ganglia (Ivry, 1996). We tested this hypothesis using positron emission tomography to measure regional cerebral blood flow in eight right-handed males during estimation and reproduction of long and short intervals. Subjects performed three tasks: (1) reproduction of a short 500 ms interval, (2) reproduction of a long 2 s interval, and (3) a control simple reaction time (RT) task. We compared the two time reproduction tasks with the control RT task to investigate activity associated with temporal processing once additional cognitive, motor, or sensory processing was controlled. We found foci in the left substantia nigra and the left lateral premotor cortex to be significantly more activated in the time reproduction tasks than the control RT task. The left caudate nucleus and right cerebellum were more active in the short relative to the long interval, whereas greater activation of the right putamen and right cerebellum occurred in the long rather than the short interval. These results suggest that the basal ganglia and the cerebellum are engaged by reproduction of both long and short intervals but play different roles. The fundamental role of the substantia nigra in temporal processing is discussed in relation to previous animal lesion studies and evidence for the modulating influence of dopamine on temporal processing

    Influences of Larval Settlement Location and Rate on Later Growth and Mortality in a Sessile Marine Invertebrate Population (Spirorbis spirillum)

    Get PDF
    Planktonic larvae of the tube-buildlng polycheate Spirorbis spirillum (Linnaeus) settle abundantly along seagrass blades of Thalassia testudinum Banks ex Konig in bays of the northern Gulf of Mexico. Detailed demographic parameters of settled Individuals were measured in situ by using biological stains that mark the leading margin of tubes containing living S. spirillum and this method yielded similar results when compared with independent estimates of settlement rate, growth, and mortality. Larvae tended to settle near the base of growing seagrass blades and subsequent survivorship and tube growth were highest for Individuals nearest the base. Survivorship that is positively affected by settlement location and not negatively affected by the density of conspecifics suggests that temporal changes In settlement can have a significant Influence on benthic population size over time. This was supported by a positive correlation between population size and settlement and suggests that local extinction is potentially less likely to occur because planktonic larvae may be transported distances greater than the scale of ecological processes acting on the benthic stage

    Patterns of Dispersion, Movement and Feeding of the Sea Urchin Lytechinus variegatus, and the Potential Implications for Grazing Impact on Live Seagrass

    Get PDF
    The sea urchin Lytechinus variegatus is a known grazer of both living and dead tissue of turtlegrass, Thalassia testudinum, occasionally denuding large areas of seagrass. Field studies have attempted to assess effects of herbivory on seagrass by enclosing urchins at various densities. However, it is unclear how unrestricted urchins affect seagrass at lower densities more typically observed in the field. This study describes movement, feeding, and distribution of L. variegatus within beds of T. testudinum in St. Joseph Bay, Florida (USA) to quantify this urchin’s impact as a seagrass grazer. Urchins were absent from portions of seagrass beds closest to shore, present at low densities midway across the bed, and at highest densities (up to ~5 individuals/m2) at the offshore edge of the bed. Urchins tended not to aggregate, moved twice as rapidly where seagrass cover was reduced, and moved \u3e 20X faster when placed in areas of open sand. Dead seagrass tissue occurred 4—30X more frequently on oral surfaces than living seagrass tissue. Fecal pellets with dead seagrass tissue were \u3e 3X more common than pellets with live seagrass tissue. Injury to seagrass leaves was more common along dead leaf sections than live sections (\u3e 2—10X). Overall, spatial distributions, movement, and diet indicate that L. variegatus at densities observed in this study would tend to have minimal effects on living seagrass. Episodic periods of denuding grassbeds reported in the literature suggest L. variegatus switches to live seagrass tissue as dead tissue becomes scarce during times of high urchin density

    Electronic State Unfolding for Plane Waves: Energy Bands, Fermi Surfaces, and Spectral Functions

    Get PDF
    Present day computing facilities allow for first-principles density functional theory studies of complex physical and chemical phenomena. Often such calculations are linked to large supercells to adequately model the desired property. However, supercells are associated with small Brillouin zones in the reciprocal space, leading to folded electronic eigenstates that make the analysis and interpretation extremely challenging. Various techniques have been proposed and developed to reconstruct the electronic band structures of super cells unfolded into the reciprocal space of an ideal primitive cell. Here we propose an unfolding scheme embedded directly in the Vienna Ab initio Simulation Package (VASP) that requires modest computational resources and allows for an automatized mapping from the reciprocal space of the supercell to the primitive cell Brillouin zone. This algorithm can compute band structures, Fermi surfaces, and spectral functions by using an integrated postprocessing tool (bands4vasp). Here the method is applied to a selected variety of complex physical situations: the effect of doping on the band dispersion in the BaFe2(1-x)Ru2xAs2 superconductor, the interaction between adsorbates and polaronic states on the TiO2(110) surface, and the band splitting induced by noncollinear spin fluctuations in EuCd2As2

    In Parkinson's disease on a probabilistic Go/NoGo task deep brain stimulation of the subthalamic nucleus only interferes with withholding of the most prepotent responses

    Get PDF
    The evidence on the impact of subthalamic nucleus deep brain stimulation (STN-DBS) on action restraint on Go/NoGO reaction time (RT) tasks in Parkinson's disease (PD) is inconsistent; with some studies reporting no effect and others finding that STN stimulation interferes with withholding of responses and results in more commission errors relative to STN-DBS off. We used a task in which the probability of Go stimuli varied from 100 % (simple RT task) to 80, 50 and 20 % (probabilistic Go/NoGo RT task), thus altering the prepotency of the response and the difficulty in withholding it on NoGo trials. Twenty PD patients with STN-DBS, ten unoperated PD patients and ten healthy controls participated in the study. All participants were tested twice; the order of on versus off stimulation for STN-DBS PD patients was counterbalanced. Both STN-DBS and unoperated PD patients were tested on medication. The results indicated that STN-DBS selectively decreased discriminability when the response was most prepotent (high-80 %, as compared to low Go probability trials-50 and 20 %). Movement times were faster with STN stimulation than with DBS off across different Go probability levels. There was neither an overall nor a selective effect of STN-DBS on RTs depending on the level of Go probability. Furthermore, compared to healthy controls, both STN-DBS and unoperated PD patients were more prone to making anticipatory errors; which was not influenced by STN stimulation. The results provide evidence for 'load-dependent' effects of STN stimulation on action restraint as a function of the prepotency of the Go response

    Probabilistic Analysis of Earthquake-Induced Pool Release

    Get PDF
    Wappapello Dam was constructed in 1938 near the New Madrid seismic region. Loose sands in the dam foundation led to concern for liquefaction and embankment sliding if a large earthquake were to occur. However it was also recognized that the operation of the dam for flood control results in relatively low reservoir levels the majority of the time, substantially reducing the risk of earthquake-induced flooding. Because of these factors, a probabilistic analysis was performed to assess the likelihood of the combination of required events leading to an earthquake-induced pool release. Results of such analyses provide better information on which to make both quantitative and qualitative judgements regarding remedial action

    Exciton fine structure splitting and linearly polarized emission in strained transition-metal dichalcogenide monolayers

    Full text link
    We study theoretically effects of an anisotropic elastic strain on the exciton energy spectrum fine structure and optical selection rules in atom-thin crystals based on transition-metal dichalcogenides. The presence of strain breaks the chiral selection rules at the K\bm K-points of the Brillouin zone and makes optical transitions linearly polarized. The orientation of the induced linear polarization is related to the main axes of the strain tensor. Elastic strain provides an additive contribution to the exciton fine structure splitting in agreement with experimental evidence obtained from uniaxially strained WSe2_2 monolayer. The applied strain also induces momentum-dependent Zeeman splitting. Depending on the strain orientation and magnitude, Dirac points with a linear dispersion can be formed in the exciton energy spectrum. We provide a symmetry analysis of the strain effects and develop a microscopic theory for all relevant strain-induced contributions to the exciton fine structure Hamiltonian.Comment: 12 pages, 5 figure

    Magnetic Force Sensing Using a Self-Assembled Nanowire

    Get PDF
    We present a scanning magnetic force sensor based on an individual magnet-tipped GaAs nanowire (NW) grown by molecular beam epitaxy. Its magnetic tip consists of a final segment of single-crystal MnAs formed by sequential crystallization of the liquid Ga catalyst droplet. We characterize the mechanical and magnetic properties of such NWs by measuring their flexural mechanical response in an applied magnetic field. Comparison with numerical simulations allows the identification of their equilibrium magnetization configurations, which in some cases include magnetic vortices. To determine a NW's performance as a magnetic scanning probe, we measure its response to the field profile of a lithographically patterned current-carrying wire. The NWs' tiny tips and their high force sensitivity make them promising for imaging weak magnetic field patterns on the nanometer-scale, as required for mapping mesoscopic transport and spin textures or in nanometer-scale magnetic resonance

    Push-pull thiophene chromophores for electro-optic applications: from 1D linear to beta-branched structures

    Get PDF
    We report the synthesis and characterization of a novel series of push-pull chromophores bearing 1D linear and beta-branched thiophenes as pi-conjugated spacers between a 2, 2, 4, 7-tetramethyl-1, 2, 3, 4-tetrahydroquinoline electron donor unit and dicyano- and tricyanovinylene electron acceptor groups. The effect of the introduction of beta-thiophenes on the linear and nonlinear (NLO) optical properties as well as electrochemical and thermal data is studied in detail by performing a comparative study between the branched and 1D linear systems. In addition, a parallel DFT computational study is used to evaluate structure-property relationships. The non-linear optical behavior of the molecules both in solution and in solid state as electro-optic (EO) films using a guest-host approach shows very promising performance for electro-optic applications with high molecular first hyperpolarizabilities (mu beta) of 4840 x 10(-48) esu and electro-optic coefficients r(33) reaching 650 pm V-1. One highlight is that the electro-optic films of the beta-branched chromophores are superior in terms of thermal stability in device operation as measured by a transmissive modified reflective Teng-Man method. This work provides guidelines for the design of improved electro-optic materials including beta-branched chromophores which could be useful for practical EO applications, where both enhanced beta and r(33) values together with chemical and thermal stability are necessary

    Origin and Manipulation of Stable Vortex Ground States in Permalloy Nanotubes

    Get PDF
    We present a detailed study on the static magnetic properties of individual permalloy nanotubes (NTs) with hexagonal cross-sections. Anisotropic magnetoresistance (AMR) measurements and scanning transmission X-ray microscopy (STXM) are used to investigate their magnetic ground states and its stability. We find that the magnetization in zero applied magnetic field is in a very stable vortex state. Its origin is attributed to a strong growth-induced anisotropy with easy axis perpendicular to the long axis of the tubes. AMR measurements of individual NTs in combination with micromagnetic simulations allow the determination of the magnitude of the growth-induced anisotropy for different types of NT coatings. We show that the strength of the anisotropy can be controlled by introducing a buffer layer underneath the magnetic layer. The magnetic ground states depend on the external magnetic field history and are directly imaged using STXM. Stable vortex domains can be introduced by external magnetic fields and can be erased by radio-frequency magnetic fields applied at the center of the tubes via a strip line antenna
    • …
    corecore