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ABSTRACT  

We report the synthesis and characterization of a novel series of push-pull 

chromophores bearing 1D linear and β-branched thiophenes as π-conjugated spacers 

between a 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline electron donor unit and 

dicyano- and tricyanovinylene electron acceptor groups. The effect of the introduction 

of β-thiophenes on the linear and nonlinear (NLO) optical properties as well as 
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electrochemical and thermal data is studied in detail by performing a comparative study 

between the branched and 1D linear systems. In addition, a parallel DFT computational 

study is used to evaluate structure-property relationships. The non-linear optical 

behavior of the molecules both in solution and in solid state as electro-optic films using 

a host-guest approach shows very promising performance for electro-optic applications 

with high molecular first hyperpolarizabilities (µβ) of 4840.10-48 esu and electro-optic 

(EO) coefficients r33 reaching 650 pm/V. One highlight is that the electro-optic films of 

the β-branched chromophores are superior in terms of thermal stability in device 

operation as measured by a transmissive modified reflective Teng-Man method. This 

work provides guidelines for the design of improved electro-optic materials including β-

branched chromophores which could be useful for practical EO applications, where both 

enhanced β and r33 values together with chemical and thermal stability are necessary. 

Introduction 

The substantial demand for higher data rates1 and thus the need in the domain of 

communications for more potent photonic devices such as frequency converters, 

modulators or optical switches has led to strong research activities during the past years. 

Meanwhile, devices including electro-optic (EO) components which are based on non-

linear optical (NLO) materials and films are used for modern optical transmitters. As 

alternative to the classically used lithium niobate modulators, organic compounds have 

found their way into so-called silicon-organic hybrid (SOH) approaches where an 

integrated silicon photonics platform is combined with electro-optic organic films.2 

Modulator-bandwidths of up to 500 GHz have been demonstrated recently.3 In the SOH 

platform the EO-films are mainly prepared using a guest-host approach, which means 

that organic compounds with a highly asymmetric structure and high dipole moment are 
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macroscopically oriented in polymer matrices (such as poly(methylmethacrylate)) by 

electric field poling.4 SOH-modulators provide high interaction of the optical signal 

with the electro-optic film, typically using the Pockels effect. The molecular first 

hyperpolarizability β of the chromophore is the main physical quantity for the Pockels 

effect on the molecular scale, which allows a change in the refractive index ∆n of the 

materials by application of weak external electric fields.5 The electro-optic coefficient 

r33 is the most specific characteristic parameter of the poled EO-film and can be 

measured by the Teng-Man method6, which gives the bulk coefficient of the material. In 

SOH devices, the result may be different for the same material due to the thin films and 

sub-micron structures. In-device electro-optic coefficients higher than 300 pm/V have 

been demonstrated.7 

In terms of organic compounds push-pull chromophores or so-called donor-π-

acceptor chromophores show the necessary anisotropy since they consist of an electron 

donating moiety (donor) that is connected to an electron accepting unit (acceptor) via a 

π-conjugated bridge. A whole variety of different combinations of building blocks is 

possible. The chemical structure of donor, p-bridge as well as acceptor units allows in 

this context the fine tuning of HOMO-LUMO levels and the respective electrochemical 

band gap. Possible donor units can be based on triaryl amine structures or ring-locked 

modifications which can increase general temperature stability. Replacing phenyl 

groups by for example thiophene or pyrrole units can reduce the aromatic stabilization 

leading to increased donating strength.4, 8, 9 Further interesting moieties for incorporation 

into functional donor-π-acceptor chromophores are electron deficient structures like for 

example pyridazine rings. The electron deficient nature, can influence electron transfer 

and molecular arrangement.10 
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In terms of acceptor groups, di- or tricyanovinylene based structures containing strongly 

electron withdrawing cyano groups show promising acceptor strengths when integrated 

into donor-π-acceptor chromophores.11, 12 Additionally, successful acceptor groups have 

been realized based on the strong electron withdrawing character of tricyano-

vinyldihydrofurane (TCF) acceptor moieties.9 Donor and acceptor units can be 

connected by multiple conjugated bridging moieties going from simple vinylene units to 

more complex bridges like phenylene or thienylene groups.4, 13a,f  Furthermore, other 

strategies such as the rigidification of the spacer groups (i.e. covalently bridged 

dithienylene14 or fused terthiophenes15), the insertion of proaromatic spacers (i.e. p-

benzoquinoid units)16 or twisted multiarylene groups17 have been successfully used to 

strengthen properties like intramolecular charge transfer and first molecular 

hyperpolarizabilities. 

Molecular properties such as molecular first hyperpolarizability β, dipole moment µ, 

thermal and chemical stability as well as the long term stability of the electro-optic 

coefficient r33 of generated materials can be tailor-made by means of synthetic 

strategies. In this regard, many different potent molecular structures with good electro-

optic properties have already been created. High molecular first hyperpolarizabilities 

and electro-optic coefficients can be achieved by using polyene like structures as 

conjugated bridge systems.18 Chromophores with phenyltetraene bridge systems, 

dialkylamino and tetrahydroquinoline donors and strong TCF acceptors showed electro-

optic coefficients of up to 306 pm/V after incorporation into a polymeric matrix and 

subsequent electric field poling.19-22 Using tetramethyl-formyljulolidine as donor in 

chromophores lead to values of 337 pm/V.23 The introduction of isophorone rings into 
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the backbones of polyene like conjugated bridge systems of chromophores is an often 

used way to enhance the chemical and thermal stability of such molecules.24-26 A good 

trade-off between chemical and thermal stability, ease of synthetic accessibility and 

functionalizability is granted by the use of thiophenes as the conjugated bridge of push-

pull chromophores.4, 27, 28 Many different structures have been synthesized with 

thiophene-based building blocks like for example simple thiophenes, 

ethylenedioxothiophene (EDOT) or dithienylethylene (DTE).29-31  

In our past work we have specialized on the synthesis and characterization of functional 

conjugated oligo and polythiophenes including linear, branched and side-chain-π-

extended polythiophenes.32-36 By connecting thiophenes at the β-position functional 

properties like an extended π-system can influence π-stacking behavior and charge 

transport on the molecular level. This structural motive can further be used to tune 

HOMO and LUMO levels of the resulting chromophore structure.37 Since thiophenes 

are – as already mentioned – also a promising tool in the field of NLO materials we 

present here the synthesis and characterization of novel chromophores with linear and 

branched thiophene bridges. While the donor is kept the same, as acceptors we compare 

dicyanovinylene (DCV) and tricyanovinylene (TCV) derivatives which are both 

reasonably good electron acceptors. In this work, the effect of β-branched thiophene 

units on both the microscopic and macroscopic NLO response of chromophores is 

analyzed for the first time. Absorption spectroscopy, cyclic voltammetry (CV) and 

EFISH-measurements are performed to characterize the linear optical properties and 

microscopic NLO behavior of the chromophores. The experiments are accompanied by 

density functional theory (DFT) calculations which have become an important tool for 

the structural design and therefore the optimization of important parameters (e.g. µ and 

β) for the nonlinear optical activity of NLO chromophores.28, 38-41 In addition, the 
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potential of the chromophores in real devices is characterized by a transmission 

modified Teng-Man method of films prepared by a host-guest approach. Our results 

clearly show that the macroscopic EO activity (r33 value) of the branched chromophores 

is higher when compared to the 1D linear systems accompanied with larger stability 

upon time, thus highlighting them as very good candidates for the use in organic EO 

devices. 

Synthesis 

In this work we report the synthesis of a set of 10 different thiophene-bridged push-

pull chromophores. The structures of these chromophores are shown in Figure 1. All of 

the introduced chromophores share the same ring-locked 2,2,4,7-tetramethyl-1,2,3,4-

tetrahydroquinoline donor unit that had also been used by Jen et al. to create push-pull 

chromophores.19 The ring-fixation of the amine leads to a better overlap of the π-orbital 

of the nitrogen atom with the π-orbital of the benzene ring of the chromophore and 

thereby to an enhanced electron donating ability in comparison to normal amines. Based 

on our own experience with side-chain-π-extended polythiophenes35 we designed 

chromophores with either linear or side chain modified polythiophenes including β-

connected thiophene-bridges of different lengths. In this context, we were interested in 

the influence of the side-thiophene groups on the optical, electronoic, thermal and 

nonlinear optical properties of the chromophores. Furthermore, the two different 

acceptors dicyanovinylene (DCV) and tricyanovinylene (TCV) are compared. 
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Figure 1. Chemical structures of all synthesized push-pull molecules reported in this 

work. 

All chromophores were synthesized through a convergent approach where the 

building blocks of the donor and the π-conjugated bridged system were prepared 

independently. An overview over the final steps of the synthesis route for all 

chromophores is shown in Figure 2. 

 Scheme 1. Convergent synthesis of the reported linear and β-branched chromophores. 

Conditions: a) THF/toluene, aliquat 336, Na2CO3, Pd(PPh3)4, reflux overnight; b) 

acetone/water, p-TsOH, reflux, 2 hours; c) EtOH, NaOH, malononitrile, reflux, 2.5 
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hours; d) THF, TBAF, rt; e) THF, n-BuLi, TCNE, rt. For more precise reaction 

conditions, we refer to the synthetic details in the supporting information. 

The donor building block 1 was synthesized in two steps outgoing from commercially 

available 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline. Depending on the length of 

the main conjugated system, the building blocks 2 and 5 were synthesized through 

standard α- and β-functionalization reactions on the thiophene backbone combined with 

Suzuki- and Stille-type cross-coupling reactions to create the bi-, ter- and 

quaterthiophene structures. The completely functionalized building blocks were then 

coupled with donor 1 to yield the chromophore precursors 3 and 6. Deprotection and 

following condensation reactions of 4 and 7 with malononitrile and tetracyanoethylene 

(TCNE) led to the desired DCV and TCV chromophores, respectively. All reactions 

besides the Suzuki-couplings of the linear DCV-precursors 4 with donor 1 led to good 

yields and were conducted following known literature procedures. For further synthetic 

details, we refer to the supporting information. 

The thermal decomposition behavior of all NLOphores was evaluated by 

thermogravimetric analysis (TGA) under argon. The obtained decomposition 

temperatures are summarized in Table S1. The molecules under study show excellent 

thermal decomposition properties at elevated temperatures in a range from ~270 °C up 

to over 410 °C. The insertion of alkylthiophenes as β-branched side chains leads to 

higher decomposition temperatures when compared to the linear molecules. The large 

increase (∆ = 59°C) found for the 3Tβ-TCV system can be explained by the C16 alkyl 

chain that is located on the β-thiophene. In comparison to their TCV counterparts, the 

DCV compounds also show enhanced thermal stability: while 2T-DCV shows 327 ºC, 

the 2T-TCV analogue gives 310 ºC. 
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DFT- optimized structures 

Figure 3a shows the lateral views of the optimized ground state structures for 2T-

DCV, 2Tβ-DCV, 3T-TCV, and 3Tβ-TCV that have been chosen as representatives for 

the series of push-pull systems under study (i.e., they include linear and branched 

shapes and also the two acceptors DCV and TCV). The dihedral angles and bond length 

alternation (BLA) for the whole series of chromophores are displayed in Table 1. As we 

can observe, the donor group is rotated around 32°-39° (θ1) with respect to the adjacent 

thiophene group in all molecules. This is most likely due to the steric influence of the 

methyl group of the donor phenyl ring. However, the rest of the π-conjugated backbone 

including the acceptor group is predicted to be almost coplanar with θ2 and θ3 reaching 

torsion angles of 0°. The only exceptions here seem to be 3T-TCV and 3Tβ-TCV that 

both show a θ2 of around 12-14° and 1Tβ-TCV that displays a torsion angle of 19° 

between the thiophene bridge and the acceptor. The latter is most likely again caused by 

a steric factor, namely the first cyano group of the TCV acceptor. Note that for the 1Tβ-

DCV system, the acceptor group and adjacent thiophene ring is almost coplanar with an 

angle θ2 of 4°. A possible explanation is that there is only one proton on the acceptor 

and therefore the branched β-thiophene does not sterically hinder the planarity of the 

overall chromophore by being too close to the acceptor group. 
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Figure 3. Top and lateral views of the optimized geometries of 2T-DCV (a), 2Tβ-DCV 

(b), 3T-TCV (c) and 3Tβ-TCV (d) calculated at the PCM-M06-2X/6-31G** level 

using CH2Cl2 as solvent.  

The β-thiophene side groups show torsion angles θβ between 41°-85° with respect to 

the chromophore backbones. Similar distortions around the inter-thiophene bonds were 

found in branched oligothiophenes when compared to their homologous linear 

systems.42 The large twisting between the peripheral β-linked thienyl rings and the 

conjugated backbones most likely lead to a reduced influence of the β-branching on the 

electronic properties of the molecules, as will be discussed below. 
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Table 1. DFT-calculated (PCM-M06-2X/6-31G** level using CH2Cl2 as solvent) 

inter-ring dihedral angles (θ) and BLA values for the thienyl rings of the linear and 

branched push-pull systems under study. See Figure 3 for the ring labelling. 

 Torsion Angles [°] Bond-Length-Alternation [Å] 

 θ1 θ2 θ3 θb Ring 1 Ring 2 Ring 3 Ring b 

1T-DCV 36 1 - - 0.017 - - - 

1Tβ-DCV 35 4 - 41 0.024  - 0.055 

2T-DCV 38 9 0 - 0.040 0.017 - - 

2Tβ-DCV 38 1 0 85 0.044 0.014  0.062 

         

1T-TCV 32 1 -  0.005 - - - 

1Tβ-TCV 34 19  44 0.022  - 0.053 

2T-TCV 38 3 0 - 0.034 0.007 - - 

2Tβ-TCV 37 5 2 77 0.038 0.005  0.061 

3T-TCV 39 12 6 - 0.044 0.034 0.009 - 

3Tβ-TCV 38 14 5 62 0.050 0.032 0.009 0.061 

 

We now inspect the DFT-calculated BLA values and Mülliken charge analysis which 

are two very useful methods to evaluate the ground-state electronic structure and 

estimate the molecular polarization. Table 1 further summarizes the calculated BLAs 

which represent the successive single-double CC bond length alternation and which are 

positive for aromatic oligomer chains and close to zero upon increasing quinoidization. 

The BLAs show an increase of the quinoidal character for the thienyl groups which are 

closer to the acceptor units, while the thienyl groups directly attached to the donor still 

retain a partial aromatic character. The insertion of the stronger TCV acceptor unit leads 

to slightly lower BLA values in comparison to their DCV counterparts. The observed 
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BLA of 0.005 Å for 1T-TCV for example is already quite near to the cyanine-limit 

which suggests a strong tendency for charge separation in these chromophores. On the 

contrary, the BLAs of β-thiophene side groups, in particular 0.061 Å for 2Tβ-TCV and 

3Tβ-TCV, reveal that the side-thiophene groups possess a strong aromatic character.  

Nucleus-Independent Chemical Shifts (NICS), as an aromaticity criterion, were also 

calculated for all the push-pull systems (see Supporting Information). The more 

negative the NICS value, the more aromatic the system. The insertion of the donor and 

acceptor groups on the p-conjugated thiophene-based spacers results on less negative 

NICS values to those obtained for their unsubstituted oligothiophene homologues; this 

is in accordance with the better electronic delocalization of the push-pull systems as a 

result of the intramolecular charge-transfer. Interestingly, the peripheral b-linked thienyl 

rings retain their aromatic character, in accordance with the BLAs, as proven by their 

more negative NICS-values when compared to those calculated for the α-conjugated 

thienyl units connecting the donor and acceptor groups. 

Figure 4 shows the Mülliken atomic charges over different molecular domains of 2T-

DCV and 3T-TCV systems taken as models (see Supporting Information for the rest of 

the compounds). The charge distribution indicates an increase in the charge-separated 

resonance form upon insertion of stronger electron-accepting groups, i.e., the negative 

charge over the acceptor group is larger in the TCV-based systems when compared to 

the DCV-substituted ones. The positive charge over the oligothiophene spacer group is 

also larger when lengthening the linear oligothiophene backbone from 1T to 2T to 3T.  

By contrast, similar charge-transfer character is expected in both branched and linear 

structures; for instance, the calculated charges over the donor-acceptor groups are 

+0.174/-0.192 e for 2T-DCV and +0.180/-0.194 e for 2Tβ-DCV. This suggests that the 
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elongation of the π-conjugated spacer by insertion of β-thiophene side groups results in 

a small effect of the ground state properties, with a similar contribution of the charge-

separated resonance form in the ground state when comparing the linear with the 

branched structures. 

 

Figure 4. Mülliken atomic charges for 2T-DCV (a), 2Tβ-DCV (b), 3T-TCV (c) and 

3Tβ-TCV (d) systems calculated at the PCM-M06-2X/6-31G** level using CH2Cl2 as 

solvent.  

Absorption behavior 

The solution absorption behavior of all chromophores was investigated in several 

solvents of different polarity. Figure 5a and c show the recorded absorption spectra of 

the 2T-DCV and the 3T-TCV chromophores in dichloromethane solution. The 

absorption spectra of all compounds show one broad and prominent lower energy band. 

For each chromophore this band is also accompanied by several high energy transitions. 

The absorption maxima are observed at 537 nm for 2T-DCV and 2Tβ-DCV (Figure 5a) 
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and 655 and 660 nm for 3T-TCV and 3Tβ-TCV, respectively (Figure 5c). The 

influence of the introduction of a β-branching thienyl group on the energy of the 

absorption maximum is therefore rather small or nonexistent. However, the maximum 

molar absorption coefficient shows always higher values for the linear chromophores 

when compared to the branched systems. 

Figure 5. Experimental electronic absorption spectra of 2T-DCV (a, solid line), 2Tβ-

DCV (a, dashed line), 3T-TCV (c, solid line) and 3Tβ-TCV (c, dashed line) and 

simulated absorption spectra of 2T-DCV (b, solid line), 2Tβ-DCV (b, dashed line), 3T-

TCV (d, solid line) and 3Tβ-TCV (d, dashed line) calculated at PCM-M06-2X/6-

31G** level using CH2Cl2 as solvent. For the description of the molecular orbital 

composition of each electronic transition, see Table S6 in the Supporting Information. 

TD-DFT calculations can help to identify the nature of the electronic transitions. In 

good agreement with the experimental data, calculations predict the existence of one 
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intense electronic transition at lower energy and several transitions at higher energy (see 

Figure 5b and d and Figure S25). This lowest-energy transition is assigned to a one 

electron promotion from the HOMO mainly located on the tetrahydroquinoline electron 

donor group and adjacent thiophene unit to the LUMO placed in the neighborhood of 

the acceptor group (see the atomic orbital composition of the frontier molecular orbitals 

displayed in Figure 6). As a result, this HOMOàLUMO excitation has a large charge-

transfer (CT) character, in which the α-conjugated thiophene units connecting the donor 

and acceptor groups act as the overlapping path of the transition, and accounts for the 

large intensity. However, there is a negligible impact of the β-branched thiophenes on 

the frontier orbital topologies (see Figure 6 for 3Tβ-TCV molecule taken as model); 

this reveals the insignificant participation of the branched side groups on the electron 

density transfer and explains the similar wavelengths of the most intense absorption 

band experimentally observed for both linear and branched structures.  

  Figure 6. DFT-calculated molecular orbital topologies (PCM-M06-2X/6-31G** level 

using CH2Cl2 as solvent) for 3T-TCV (a) and 3Tβ-TCV (b) chromophores taken as 

models. For the rest of compounds see Supporting Information. 
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Looking at one acceptor series of chromophores in one solvent shows that the 

elongation of the α-conjugated backbone upon insertion of thiophene units leads, as 

expected, to a redshift of the maximum of the CT-band (see Table S2). For the TCV-

series, however, this effect is only valid for the 1T-2T pairs of the chromophores. 

Ongoing from the 2T- to the 3T-derivatives there is a blueshift of the absorption 

maximum observable. This is a hint to an already higher contribution of charge 

separation in the ground state for these molecules. Another effect that can be seen is 

positive solvatochromism for all chromophores in different solvents starting from 1,4-

dioxane up to dichloromethane (with highest dielectric constant). Switching the solvent 

to acetone or acetonitrile causes a blueshift of the CT-band. This effect has also been 

reported by other groups in the literature. Davies et al attributed this reversal of the 

charge transfer in the molecules to a potential high polarizability of the chromophores.43, 

44  

Electrochemical properties 

In order to get a better idea of the electronic properties of the synthesized NLO-

phores, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) 

measurements were performed for all compounds. The measurements were carried out 

in anhydrous and degassed dichloromethane solution with NBu4PF6 as electrolyte. 

Figure 7 shows the recorded CVs for the 2T-DCV and 3T-TCV molecules.  
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 Figure 7. Measured cyclic voltammograms of the chromophores 2T-DCV (a), 2Tβ-

DCV (b), 3T-TCV (c) and 3Tβ-TCV (d) recorded in dichloromethane with 0.1 M 

Bu4NPF6 as electrolyte. Black: oxidation, red: reduction. 

Both 2T-DCV molecules, Figure 7a and b, show a perfectly reversible first oxidation 

wave and an irreversible reduction. Such a reduction behavior for molecules with the 

same acceptor has already been reported before.45-47 All TCV compounds do also show 

reversible first oxidations but unlike their DCV counterparts also reversible reduction 

waves. All systems with two or more thiophenes in chain direction of the π-conjugated 

backbone also show a second oxidation wave that is also reversible in all cases, see 

supporting information Fig. S2 and S3. The 2T-TCV and 3T-TCV compounds also 

display a second reduction wave, which seems to be reversible for the 2T-compounds 

and quasi-reversible for the 3T-chromophores, Fig. S3. The resulting electrochemical 
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bandgaps of the synthesized chromophore series lie in the range of 2.1 -1.1 eV. These 

values are comparable to optical bandgaps Eg,OPT determined from the onset of the 

experimental absorption spectra. 

HOMO and LUMO orbital energies were calculated from the half wave potentials of 

oxidation and reduction, respectively. A formal potential of -5.1 eV was assumed for 

the Fc/Fc+ redox couple in the Fermi scale. Table 2 shows a summary of the frontier 

orbital energies of all compounds under study as determined from the CV and DPV 

(Fig. S1) measurements. The HOMO/LUMO data determined by CV and DPV are 

consistent throughout the whole series of molecules.  

Overall, the HOMO energies are slightly decreased when going from DCV to the 

TCV acceptors. By contrast, the HOMO energies are increased by around 0.2 eV going 

from one to two thiophenes in the linear conjugated bridge (i.e., -5.45 eV for 1T-TCV 

vs. -5.24 eV for 2T-TCV). On the other hand, the LUMOs are getting stabilized 

(LUMO decreases) by elongating the chromophore when keeping the TCV acceptor 

identical, but also by changing from the weaker DCV to the stronger TCV acceptor.  

Interestingly, the introduction of the β-branching units leads to only slight differences 

on the frontier orbital energies with a very small HOMO stabilization and LUMO 

destabilization when compared to the linear system. In the case of 2T-DCV vs. 2Tβ-

DCV, the HOMO values change from -5.20 to – 5.26 eV and the LUMO values 

changes from -3.48 to -3.43 eV. 

 

Table 2: Summary of the electrochemical data of all compounds together with the 

determined optical bandgaps.  



 

 19 

Compound EI
1/2, ox

 
[V] 

E
HOMO

 
[eV] 

EI
1/2, red

 
[V] 

E
LUMO

 
[eV] 

E
g, EC

 
[eV] 

l
onset [nm] /  

Eg, OPT [eV] 
1T-DCV 0.26 -5.36 - - - 653 / 1.90 

1Tβ-DCV 0.30 -5.40 -1.81a -3.29a 2.11 674 / 1.84 

2T-DCV 0.10 -5.20 -1.62a -3.48a 1.72 729 / 1.70 

2Tβ-DCV 0.16 -5.26 -1.67a -3.43a 1.83 725 / 1.71 

       

1T-TCV 0.35 -5.45 -1.11 -3.99 1.46 861 / 1.44 

1Tβ-TCV 0.38 -5.48 -1.04 -4.06 1.42 905 / 1.37 

2T-TCV 0.14 -5.24 -1.12 -3.98 1.26 1016 / 1.22 

2Tβ-TCV 0.19 -5.29 -1.03 -4.07 1.22 1016 / 1.22 

3T-TCV 0.10 -5.20 -0.95 -4.15 1.05 1051 / 1.18 

3Tβ-TCV 0.12 -5.22 -0.99 -4.11 1.11 1033 / 1.20 

adetermined by DPV measurements, see Figure S1. 

 

Figure 8. DFT-calculated molecular orbital energies of all chromophores under study 

at the PCM-M06-2X/6-31G** level using CH2Cl2 as solvent. 
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DFT calculations have also been used to simulate the frontier molecular energy levels 

of all chromophores. The DFT-calculated HOMO and LUMO energy levels predict the 

same trends as those observed from the CV and DPV experiments (see Figure 8). The 

calculations predict a stabilization of the LUMO upon elongation of the thiophene-

spacer group (from 1T à 2T à 3T) and when increasing the electron-acceptor 

character (from DCV à TCV). For instance, the predicted stabilization of the LUMO is 

0.29 eV when going from 1T-TCV to 3T-TCV vs 0.16 eV (-3.99 vs. -4.15 eV, Table 2) 

obtained from the electrochemical data. Going from 2T-DCV to 2T-TCV the LUMO 

stabilization prediction is 0.67 eV vs 0.50 eV from the electrochemical data (-3.48 vs. -

3.98 eV, Table 2). On the other hand, very slight differences of the HOMO and LUMO 

energies are found upon insertion of a β-branched thiophene unit in good accordance 

with the experimental data; for instance, the HOMO is stabilized by 0.01 eV and the 

LUMO is destabilized by 0.02 eV going from 2T-DCV to 2Tβ-DCV in the calculated 

data vs. 0.05 eV from the electrochemical data (-3.48 vs. 3.43 eV, Table 2).  

NLO-properties 

Molecular nonlinearity 

In order to determine the overall potential of the designed compounds for NLO 

applications, their nonlinear optical activity was measured by electric field induced 

second harmonic generation (EFISH) in dichloromethane solutions. DFT calculations 

have also been performed to rationalize the microscopic NLO properties of the designed 

chromophores. All experimental and theoretical results are listed in Table 3 for direct 

comparison. The calculated µβ0 values are in good agreement with the experimental 

results reproducing the observed trends regarding the effects of the acceptor (i.e. DCV 

à TCV), the length of the linear oligothiophene spacer (i.e., 1T à 2T à 3T) and the 
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insertion of β-branched thiophene side groups (i.e., 1T à 1Tβ). Interestingly, our new 

push-pull systems display higher NLO activity to that recorded for the extensively 

studied asymmetric azo dye Disperse Red 1 (DR1) that can be used as a suitable 

reference. Under the same experimental conditions, µβ and µβ0 obtained for DR1 in 

dichloromethane were 740 and 490 x 10-48 esu, respectively, quite close to the value 

reported in the same solvent by Dirk et al.48 

According to TD-DFT calculations, most of the NLO response in these chromophores 

arises from the lowest energy excitation, which has a charge-transfer character. All 

NLO-phores under study show positive µβ0 values. This means that the contribution of 

the charge separated resonance form is higher in the excited state than in the ground 

state and, therefore, excitation of the molecules from the ground to the excited state 

results in an increased dipole moment.  

Concerning the influence of the acceptor groups, replacement of the DCV acceptor by 

the stronger TCV acceptor leads, as expected, to a dramatic increase of the observed 

NLO activity, achieving 3-4 times higher µβ0 values. According to the two level 

approach (β(0) ∝ (∆µge µge
2)/Emax

2),49 the  red-shift of the CT transitions together with 

the increase in the transition dipole moment (µge) and dipole moment change (∆µge) are 

responsible for most of the enhanced hyperpolarizability of these systems. Elongation of 

the linear conjugated system by addition of additional thiophenes shows the same effect, 

but less pronounced. For the TCV systems, the NLO activity seems to reach saturation, 

since only small increments in the NLO activity are found when going from 2T-TCV to 

3T-TCV and from 2Tβ-TCV to 3Tβ-TCV. Still, these chromophores show the highest 

µβ0 values of the series under study reaching over 4840 ∙ 10-48 esu for 3T-TCV.  
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Regarding the impact of the β-branched side groups a decrease on the NLO activity is 

observed when comparing the linear with the branched chromophores: A reduction of 

µβ0 up to 20% is found in some cases. This trend is also predicted by the performed 

DFT calculations and seems to be mainly caused by the reduction of µge and ∆µge 

resulting in lower β0 values upon the insertion of β-branching side units; note that the 

third component of the two level model Emax is predicted to be almost unchanged when 

going from the linear to the branched derivatives which is supported by the 

experimental absorption data. 

Table 3: Experimental and calculated nonlinear optical properties of all 

chromophores. 

 

 

 

Compound 

 

Experimental[a] 

Theoretical 

Polar 

M062X/6-31G**[c] 

TD-DFT 

M062X/6-31G**[c] 

µβ  

[10-48 esu] 

µβ0  

[10-48 esu][b] 
µb0 [10-48 esu] µge [D] Dµge [D] Emax [eV] 

1T-DCV 1150 730 1156 9.5 15.3 2.82 

1T-TCV 5400 2350 2691 10.4 16.3 2.33 

1Tβ-DCV 1000 620 1012 8.8 15.1 2.76 

1Tβ-TCV 4100 1760 1816 8.6 18.4 2.33 

2T-DCV 1490 940 2758 11.5 18.6 2.67 

2T-TCV 9100 3750 5828 11.8 23.0 2.24 

2Tβ-DCV 1300 820 2227 11.0 17.6 2.68 

2Tβ-TCV 7600 3160 4858 9.7 22.2 2.24 

3T-TCV 10400 4840 8449 12.7 25.8 2.22 

3Tβ-TCV 7700 3530 6909 13.2 24.0 2.24 
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 [a] Measured by EFISH in dichloromethane. Experimental uncertainty is ± 10% except 

for 2Tβ-DCV (± 20%) [b] Calculated using a two level model.49 [c] Solvent 

calculations using the PCM model in CH2Cl2. 

Macroscopic nonlinearity. 

In addition to the electro-optical EFISH measurements, selected chromophores were 

further characterized in thin films using a guest-host approach with PMMA as host. The 

measurement set-up is realized as a modified transmissive version of the reflective 

Teng-Man6 technique and is built motivated by literature 50-52. A major advantage of the 

set-up (see Figure 9a) is an integrated hot-stage which enables the performance of 

different poling processes inside the sample chamber. The laser source (1550 nm) is 

connected via glass fibers to the top of the sample chamber. After passing a collimator 

and a first polarizer the laser light consists of a s- and p- polarized component. Due to 

the different polarizations each of the components are affected by a different, voltage 

dependent, effective refractive index. Leaving the sample, the beams pass a λ/4 plate 

and a second polarizer and collimator inducing an interference of both components. The 

resulting intensity versus time is detected by a photo-diode and processed with the help 

of a matlab script. 

All chromophore films were deposited from chloroform solutions containing 25 wt% 

of the chromophore with respect to the PMMA matrix with an overall concentration of  

75 mg/mL. Here, bladecoating on ITO substrates was applied which resulted in films 

with an average thickness of 1.5 µm. The homogeneity of the films and therefore 

homogeneous distribution of the chromophores in the PMMA matrix was checked with 

atomic force microscopy.  
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A second ITO electrode is then placed on top of the chromophore film to build a 

sandwich sample allowing the transmissive characterization. The poling procedure 

consists of three steps and can be performed directly in the measurement set-up. After 

conditioning the sample for 30 minutes at 110 °C as a first step, an electric field of 35 to 

50 V/µm is applied for 30 minutes. As last step, the sample is cooled down to room 

temperature with still applied electric field to fix the chromophores in the oriented state. 

After finishing the poling process the measurement of the electro-optic coefficient was 

started immediately.  

To compare the electro-optic properties of linear and β-branched chromophores, two 

representative compounds of each family were characterized. The electro-optic 

coefficient of the linear compound 1T-TCV was already measured53 and can be used to 

further classify the results. The electro-optic coefficient r33 for the four different 

chromophores is recorded over time to gain information about the time stability of the 

chromophore orientation. All results are summarized in Table 4. 

Table 4. Time development of the measured r33 values of poled chromophore films.  

 r
33

 (initial value)  
[pm/V] 

 r
33

 after 2 h 
[pm/V] 

r
33

 after 18 h 
[pm/V] 

1T-TCV 350 150 10 

2T-TCV 650 (+/- 100) 150 (+/- 50) 45 (+/- 20) 
2Tβ-TCV 240 (+/- 75) 180 (+/- 50) 100 (+/- 50) 

3Tβ-TCV 375 (+/- 75) 250 (+/- 75) 190 (+/- 50) 

 

 

The result of compound 2T-TCV shows a similar behavior as 1T-TCV. The initial r33 

value of 650 (+/- 100) pm/V after poling is very promising but as time dependent 
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measurements imply, the orientation cannot be conserved over long time. After two 

hours more than 75 % of the initial orientation is lost, represented by a r33 value of 150 

(+/- 50) pm/V. This observation is consistent with the measurement of 1T-TCV 

showing a loss of orientation of more than 50 % after two hours (see Figure 9b).  

The measurements of the two β-branched chromophores 2Tβ-TCV and 3Tβ-TCV 

deliver different results. Compared to 2T-TCV the initial r33 values of 240 (+/- 75) 

pm/V for 2Tβ-TCV and 375 (+/- 75) pm/V for 3Tβ-TCV are noticeably lower. When 

considering the time stability of these values, measurements indicate a more stable 

orientation of β-branched systems with values of 180 (+/- 50) pm/V for 2Tβ-TCV and 

250 (+/- 75) pm/V for 3Tβ-TCV after 2 hours. Measurements after a time period of 18 

hours confirm the enhancement of the stability with r33 values of 100 (+/- 50) pm/V for 

2Tβ-TCV and 190 (+/- 50) pm/V for 3Tβ-TCV. This means a loss of orientation of 

about 50 % after 18 hours which is a significantly longer time period compared to the 

linear compounds reaching a loss of >50 % after just 2 hours of time. 

Figure 9. (a) Experimental set-up with an attached sandwich sample inside the sample 

chamber. The scheme on top illustrates the poling process applied to a sandwich sample 

including the EO-film with aligned chromophores at poling voltages (Upoling) of 50 V. 



 

 26 

(b) Measured results of the electro-optical coefficient r33 after poling over a period of 2 

hours for different chromophores are shown. 

By adding a substituted thiophene 2,5-thienyl moiety to the conjugated π-bridge, 

creating a β-branched chromophore, the alignment properties of the compounds in thin 

films can be therefore strongly influenced. From our results β-branched chromophores 

seem to be advantageous due to a higher durability of the induced orientation in the film 

after poling. All of the characterized compounds show a considerable potential for 

generating promising r33 values when processed in thin films. The obtained r33 values 

are comparable to achieved values of state of the art materials like JRD1-based systems 

(a chromophore containing bulky bis(tert-butyldiphenylsilyl) donor groups) generating 

400-500 pm/V in Teng-Man measurements54 and more than 650 pm/V in in-device 

applications55. The earlier mentioned Teng-Man characterization of CF3-TCF acceptor 

chromophores19 further displays slightly lower r33 values compared to the results of our 

measurements. The possibility of transferring these results to silicon-organic hybrid 

modulator devices has already been successfully demonstrated by us and is topic of 

further in-device studies.56 

Different publications indicate a strong influence of air gap thickness variations on r33 

values inside of thin-film-samples.57 To prove that only poling causes the measured r33 

of our samples, measurements of the poled and non-poled sample-states were compared. 

The non-poled samples do not show any electro-optic effects that are above the noise 

limit of the measurement system, whereas the poled samples have high r33 values (of up 

to 650 pm/V). Thus, the existence and influence of air gap thickness variations in this 

work is improbable. Nevertheless, publications show the potential of self-assembled 
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clustering during the poling procedure.58 The resulting nano-clusters are potential 

candidates for an effect-enhancement and an interesting objective of further research. 

Conclusion 

In this work we successfully designed and synthesized a set of 10 novel organic push-

pull chromophores with linear and branched thiophene bridge-systems. The linear and 

nonlinear optical properties of β-branched chromophores along with their 

electrochemical and thermal data are compared with those found for their linear chain 

chromophores. A theoretical analysis performed in parallel helped us to evaluate the 

effects of the different molecular shapes (linear 1D vs β-branched structures) on the 

molecular polarization and NLO response. As the length of the linear π-bridges 

increases a more efficient intramolecular charge transfer from the donor to the acceptor 

is found resulting in higher µβ values. The insertion of β-branched thiophene units 

which are largely distorted with respect to the conjugated backbone only slightly affect 

the molecular polarization of the ground state and a 20% reduction of the µβ values is 

found in some cases. Interestingly, an opposite scenario occurs at the macroscopic level 

with films of the β-branched chromophores given higher EO coefficients r33 after poling 

when compared to those of the linear chromophores; this suggests a strong alignment of 

the film upon insertion of branched thiophene units. Our combined experimental and 

theoretical approach allows better understanding of structure-property relationships in 

chromophores and might help to explore new design strategies of organic conjugated 

materials with improved NLO properties and chemical and thermal stability for their 

use in electro-optic devices. 
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