6,272 research outputs found

    DELPHES 3, A modular framework for fast simulation of a generic collider experiment

    Get PDF
    The version 3.0 of the DELPHES fast-simulation is presented. The goal of DELPHES is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The DELPHES framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of DELPHES are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014

    Dependence of the critical temperature on the Higgs field reparametrization

    Full text link
    We show that, despite of the reparametrization symmetry of the Lagrangian describing the interaction between a scalar field and gauge vector bosons, the dynamics of the Higgs mechanism is really affected by the representation gauge chosen for the Higgs field. Actually, we find that, varying the parametrization for the two degrees of freedom of the complex scalar field, we obtain different expressions for the Higgs mass: in its turn this entails different expressions for the critical temperatures, ranging from zero to a maximum value, as well as different expressions for other basic thermodynamical quantities.Comment: revtex, 12 pages, 2 eps figure

    Monitoring the CMS strip tracker readout system

    Get PDF
    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system

    Data acquisition software for the CMS strip tracker

    Get PDF
    The CMS silicon strip tracker, providing a sensitive area of approximately 200 m2 and comprising 10 million readout channels, has recently been completed at the tracker integration facility at CERN. The strip tracker community is currently working to develop and integrate the online and offline software frameworks, known as XDAQ and CMSSW respectively, for the purposes of data acquisition and detector commissioning and monitoring. Recent developments have seen the integration of many new services and tools within the online data acquisition system, such as event building, online distributed analysis, an online monitoring framework, and data storage management. We review the various software components that comprise the strip tracker data acquisition system, the software architectures used for stand-alone and global data-taking modes. Our experiences in commissioning and operating one of the largest ever silicon micro-strip tracking systems are also reviewed

    Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV

    Get PDF
    A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
    • …
    corecore