5,408 research outputs found
Quantum Degenerate Systems
Degenerate dynamical systems are characterized by symplectic structures whose
rank is not constant throughout phase space. Their phase spaces are divided
into causally disconnected, nonoverlapping regions such that there are no
classical orbits connecting two different regions. Here the question of whether
this classical disconnectedness survives quantization is addressed. Our
conclusion is that in irreducible degenerate systems --in which the degeneracy
cannot be eliminated by redefining variables in the action--, the
disconnectedness is maintained in the quantum theory: there is no quantum
tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces
are boundaries separating distinct physical systems, not only classically, but
in the quantum realm as well. The relevance of this feature for gravitation and
Chern-Simons theories in higher dimensions cannot be overstated.Comment: 18 pages, no figure
PPLN Waveguide for Quantum Communication
We report on energy-time and time-bin entangled photon-pair sources based on
a periodically poled lithium niobate (PPLN) waveguide. Degenerate twin photons
at 1314 nm wavelength are created by spontaneous parametric down-conversion and
coupled into standard telecom fibers. Our PPLN waveguide features a very high
conversion efficiency of about 10^(-6), roughly 4 orders of magnitude more than
that obtained employing bulk crystals. Even if using low power laser diodes,
this engenders a significant probability for creating two pairs at a time - an
important advantage for some quantum communication protocols. We point out a
simple means to characterize the pair creation probability in case of a pulsed
pump. To investigate the quality of the entangled states, we perform
photon-pair interference experiments, leading to visibilities of 97% for the
case of energy-time entanglement and of 84% for the case of time-bin
entanglement. Although the last figure must still be improved, these tests
demonstrate the high potential of PPLN waveguide based sources to become a key
element for future quantum communication schemesComment: 11 pages, 9 figures, submitted to the European Physical Journal D
(special issue of the Quick conference
RAPD markers in wild and cultivated Vitis vinifera
Some Vitis vinifera cultivars and V. vinifera ssp. silvestris individuals have been subjected to the RAPD analysis in order to estimate the genetic diversity existing within this germplasm. 44 decamer primers of arbitrary sequence have been used for PCR and reproducible band profiles have been obtained. The distribution of the individualized polymorphic DNA markers has not turned out to be different in a remarkable way between cultivated and wild grapevines but this RAPD approach provides for some characteristics useful to analyze genetic relationships even within the Vitis vinifera species
Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs
Future nano-scale electronics built up from an Avogadro number of components
needs efficient, highly scalable, and robust means of communication in order to
be competitive with traditional silicon approaches. In recent years, the
Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect
challenges in silicon-based electronics. Current NoC architectures are either
highly regular or fully customized, both of which represent implausible
assumptions for emerging bottom-up self-assembled molecular electronics that
are generally assumed to have a high degree of irregularity and imperfection.
Here, we pragmatically and experimentally investigate important design
trade-offs and properties of an irregular, abstract, yet physically plausible
3D small-world interconnect fabric that is inspired by modern network-on-chip
paradigms. We vary the framework's key parameters, such as the connectivity,
the number of switch nodes, the distribution of long- versus short-range
connections, and measure the network's relevant communication characteristics.
We further explore the robustness against link failures and the ability and
efficiency to solve a simple toy problem, the synchronization task. The results
confirm that (1) computation in irregular assemblies is a promising and
disruptive computing paradigm for self-assembled nano-scale electronics and (2)
that 3D small-world interconnect fabrics with a power-law decaying distribution
of shortcut lengths are physically plausible and have major advantages over
local 2D and 3D regular topologies
Broadband integrated beam splitter using spatial adiabatic passage
Light routing and manipulation are important aspects of integrated optics.
They essentially rely on beam splitters which are at the heart of
interferometric setups and active routing. The most common implementations of
beam splitters suffer either from strong dispersive response (directional
couplers) or tight fabrication tolerances (multimode interference couplers). In
this paper we fabricate a robust and simple broadband integrated beam splitter
based on lithium niobate with a splitting ratio achromatic over more than 130
nm. Our architecture is based on spatial adiabatic passage, a technique
originally used to transfer entirely an optical beam from a waveguide to
another one that has been shown to be remarkably robust against fabrication
imperfections and wavelength dispersion. Our device shows a splitting ratio of
0.520.03 and 0.480.03 from 1500\,nm up to 1630\,nm. Furthermore, we
show that suitable design enables the splitting in output beams with relative
phase 0 or . Thanks to their independence to material dispersion, these
devices represent simple, elementary components to create achromatic and
versatile photonic circuits
Novel Bifunctional Compounds Targeting Nicotine and Dopamine Receptor Subtypes: Synthesis and Pharmacological Investigation
Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson\u2019s disease, schizophrenia and drug addiction or drug dependence, may be substantially built on the existence of intramembrane receptor-receptor interactions within receptor mosaics where it is believed that the D2
receptor may operate as the \u201chub receptor\u201d [1]. In particular, it has been proposed that striatal dopaminergic neurotransmission could be under the control of receptor heteromers containing D2 autoreceptors and non-alpha7 nicotinic acetylcholine
heteroreceptors [2]. In an attempt to investigate the biochemical and functional interactions
between dopaminergic autoreceptors and nAChRs containing the beta2 subunit, we
designed and prepared a group of potential bifunctional derivatives incorporating a D2/D3 agonist moiety and a nicotinic alpha4beta2 antagonist fragment, linked by polymethylene spacers of different length. The new compounds have been biologically characterized for their affinity/specificity/functional profile at the target nACh and D2 receptor subtypes. The synthesis of the designed derivatives and the results of their pharmacological investigation will be presented and discussed. [1] K.Fuxe, D.Marcellino, A.Rivera, Z.Diaz-Cabiale, M.Filip, B.Gago, D.C.S.Roberts,
U.Langel, S.Genedani, L.Ferraro, A.de la Calle, J.Narvaez, S.Tanganelli,
A.Woods, L.F.Agnati, Brain Res.Rev., 58, 2008, 415-452. [2] D.Quarta, F.Ciruela, K.Patkar, J.Borycz, M.Solinas, C.Lluis, R.Franco, R.A.Wise,
S.R.Goldberg, B.T.Hope, A.Woods, S.Ferr\ue9, Neuropsychopharmacol., 32, 2007, 35-42
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
We present a versatile, high-brightness, guided-wave source of polarization
entangled photons, emitted at a telecom wavelength. Photon-pairs are generated
using an integrated type-0 nonlinear waveguide, and subsequently prepared in a
polarization entangled state via a stabilized fiber interferometer. We show
that the single photon emission wavelength can be tuned over more than 50 nm,
whereas the single photon spectral bandwidth can be chosen at will over more
than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum
state via the violation of the Bell inequalities by more than 40 standard
deviations. This makes this scheme suitable for a wide range of quantum optics
experiments, ranging from fundamental research to quantum information
applications. We report on details of the setup, as well as on the
characterization of all included components, previously outlined in F. Kaiser
et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure
Corrigendum: Effects of a 3-week inpatient multidisciplinary body weight reduction program on body composition and physical capabilities in adolescents and adults with obesity
A correction has been made to Funding. The correct Funding statement is: “Research funded by the Italian Ministry of Health.” The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated
A quantum relay chip based on telecommunication integrated optics technology
We investigate an integrated optical circuit on lithium niobate designed to
implement the teleportation-based quantum relay scheme for one-way quantum
communication at a telecom wavelength. Such an advanced quantum circuit merges
for the first time, both optical-optical and electro-optical non-linear
functions necessary to implement the desired on-chip single qubit
teleportation. On one hand, spontaneous parametric down-conversion is used to
produce entangled photon-pairs. On the other hand, we take advantage of two
photon routers, consisting of electro-optically controllable couplers, to
separate the paired photons and to perform a Bell state measurement,
respectively. After having validated all the individual functions in the
classical regime, we have performed a Hong-Ou-Mandel (HOM) experiment to mimic
a one-way quantum communication link. Such a quantum effect, seen as a
prerequisite towards achieving teleportation, has been obtained, at one of the
routers, when the chip was coupled to an external single photon source. The
two-photon interference pattern shows a net visibility of 80%, which validates
the proof of principle of a "quantum relay circuit" for qubits carried by
telecom photons. In case of optimized losses, such a chip could increase the
maximal achievable distance of one-way quantum key distribution links by a
factor 1.8. Our approach and results emphasize the high potential of integrated
optics on lithium niobate as a key technology for future reconfigurable quantum
information manipulation.Comment: 16 pages, 8 figure
- …