36 research outputs found
Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis
The leishmaniases are diseases that
affect millions of people across
the world, in particular visceral leishmaniasis (VL) which is fatal
unless treated. Current standard of care for VL suffers from multiple
issues and there is a limited pipeline of new candidate drugs. As
such, there is a clear unmet medical need to identify new treatments.
This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism
of VL. The key challenges were to balance solubility and metabolic
stability while maintaining potency. Herein, strategies to address
these shortcomings and enhance efficacy are discussed, culminating
in the discovery of preclinical development candidate GSK3186899/DDD853651
(<b>1</b>) for VL
Separation of function between isotype switching and affinity maturation in vivo during acute immune responses and circulating autoantibodies in UNG-deficient mice.
International audienceActivation-induced deaminase converts deoxycytidine to deoxyuridine at the Ig loci. Complementary pathways, initiated by the uracil-DNA glycosylase (UNG) or the mismatch repair factor MSH2/MSH6, must process the deoxyuridine to initiate class-switch recombination (CSR) and somatic hypermutation. UNG deficiency most severely reduces CSR efficiency and only modestly affects the somatic hypermutation spectrum in vitro. This would predict isotype-switching deficiency but normal affinity maturation in Ung(-/-) mice in vivo, but this has not been tested. Moreover, puzzling differences in the amount of circulating Ig between UNG-deficient humans and mice make it unclear to what extent MSH2/MSH6 can complement for UNG in vivo. We find that Ab affinity maturation is indeed unaffected in Ung(-/-) mice, even allowing IgM responses with higher than normal affinity. Ung(-/-) mice display normal to only moderately reduced basal levels of most circulating Ig subclasses and gut-associated IgA, which are elicited in response to chronically available environmental Ag. In contrast, their ability to produce switched Ig in response to immunization or vesicular stomatitis virus infection is strongly impaired. Our results uncover a specific need for UNG in CSR for timely and efficient acute Ab responses in vivo. Furthermore, Ung(-/-) mice provide a novel model for separating isotype switching and affinity maturation during acute (but not chronic) Ab responses, which could be useful for dissecting their relative contribution to some infections. Interestingly, Ung(-/-) mice present with circulating autoantibodies, suggesting that UNG may impinge on tolerance
Enantioselective BINOL-phosphoric acid catalyzed Pictet-Spengler reactions of N-benzyltryptamine
Item does not contain fulltext4 p