675 research outputs found
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau
The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP
Crystal structures and freezing of dipolar fluids
We investigate the crystal structure of classical systems of spherical
particles with an embedded point dipole at T=0. The ferroelectric ground state
energy is calculated using generalizations of the Ewald summation technique.
Due to the reduced symmetry compared to the nonpolar case the crystals are
never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar)
interaction three phases are found upon increasing the dipole moment:
hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even
richer phase diagram arises for dipolar soft spheres with a purely repulsive
inverse power law potential . A crossover between qualitatively
different sequences of phases occurs near the exponent . The results are
applicable to electro- and magnetorheological fluids. In addition to the exact
ground state analysis we study freezing of the Stockmayer fluid by
density-functional theory.Comment: submitted to Phys. Rev.
Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration
BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression
Life at the extreme: Lessons from the genome
© 2012 BioMed Central Ltd. Extremophile plants thrive in places where most plant species cannot survive. Recent developments in high-throughput technologies and comparative genomics are shedding light on the evolutionary mechanisms leading to their adaptation
4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin
© 2018 Shrestha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis-and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell
Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae
© 2014 Wang et al. Background: Assembled RNA polymerase III (Pol III) complexes exert local effects on chromatin processes, including influencing transcription of neighboring RNA polymerase II (Pol II) transcribed genes. These properties have been designated as \u27extra-transcriptional\u27 effects of the Pol III complex. Previous coding sequence microarray studies using Pol III factor mutants to determine global effects of Pol III complex assembly on Pol II promoter activity revealed only modest effects that did not correlate with the proximity of Pol III complex binding sites. Results: Given our recent results demonstrating that tDNAs block progression of intergenic Pol II transcription, we hypothesized that extra-transcriptional effects within intergenic regions were not identified in the microarray study. To reconsider global impacts of Pol III complex binding, we used RNA sequencing to compare transcriptomes of wild type versus Pol III transcription factor TFIIIC depleted mutants. The results reveal altered intergenic Pol II transcription near TFIIIC binding sites in the mutant strains, where we observe readthrough of upstream transcripts that normally terminate near these sites, 5\u27- and 3\u27-extended transcripts, and de-repression of adjacent genes and intergenic regions. Conclusions: The results suggest that effects of assembled Pol III complexes on transcription of neighboring Pol II promoters are of greater magnitude than previously appreciated, that such effects influence expression of adjacent genes at transcriptional start site and translational levels, and may explain a function of the conserved ETC sites in yeast. The results may also be relevant to synthetic biology efforts to design a minimal yeast genome
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
Comparative study of hybrid artificial intelligence approaches for predicting peak shear strength along soil-Geocomposite drainage layer interfaces
Peak shear strength of soil-Geocomposite Drain Layer (GDL) interfaces is an important parameter in the designing and operating related engineering structures. In this paper, a database compiled from 316 large direct shear tests on soil-GDL interfaces has been established. Based on this database, five different machine learning models: Back Propagation Artificial Neural Network (BPANN) and Support Vector Machine (SVM), with hyperparameters optimised by Particle Swarm Optimisation Algorithm (PSO) and Genetic Algorithm (GA), respectively, and Extreme Learning Machine (ELM) optimised by Exhaustive Method, were adopt to assess the peak shear strength of soil-GDL interfaces. Then, a comprehensive investigation and comparison of the predictive performance for the models was conducted. Also, based on the selected optimal machine learning model, sensitivity analysis was conducted, and an empirical equation developed based on it. The research indicated that GA and PSO could significantly increase forecasting precision in a small number of iterations. The BPANN model optimised by PSO has the highest forecasting precision based on the statistics criteria: Root-Mean-Square Error, Correlation Coefficient, Coefficient of Determination, Wilmot’s Index of Agreement, and Mean Absolute Percentage Error. The normal stress has the biggest impact on the peak shear strength, followed by drainage core type, moisture saturation of the soil layer, shearing surface, soil type, consolidation condition, geotextile specification, soil density and drainage core thickness, and the ranking is affected partly by the data distribution of input parameters in the database based on mechanism analysis. An empirical equation developed from the optimal model was proposed to estimate the peak shear strength, which provides convenience for geotechnical engineering personnel with limited knowledge of machine learning technique
- …
