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Abstract
Peak shear strength of soil-Geocomposite Drain Layer (GDL) interfaces is an important parameter in the designing and 
operating related engineering structures. In this paper, a database compiled from 316 large direct shear tests on soil-GDL 
interfaces has been established. Based on this database, five different machine learning models: Back Propagation Artificial 
Neural Network (BPANN) and Support Vector Machine (SVM), with hyperparameters optimised by Particle Swarm Opti-
misation Algorithm (PSO) and Genetic Algorithm (GA), respectively, and Extreme Learning Machine (ELM) optimised by 
Exhaustive Method, were adopt to assess the peak shear strength of soil-GDL interfaces. Then, a comprehensive investigation 
and comparison of the predictive performance for the models was conducted. Also, based on the selected optimal machine 
learning model, sensitivity analysis was conducted, and an empirical equation developed based on it. The research indicated 
that GA and PSO could significantly increase forecasting precision in a small number of iterations. The BPANN model 
optimised by PSO has the highest forecasting precision based on the statistics criteria: Root-Mean-Square Error, Correlation 
Coefficient, Coefficient of Determination, Wilmot’s Index of Agreement, and Mean Absolute Percentage Error. The normal 
stress has the biggest impact on the peak shear strength, followed by drainage core type, moisture saturation of the soil layer, 
shearing surface, soil type, consolidation condition, geotextile specification, soil density and drainage core thickness, and 
the ranking is affected partly by the data distribution of input parameters in the database based on mechanism analysis. An 
empirical equation developed from the optimal model was proposed to estimate the peak shear strength, which provides 
convenience for geotechnical engineering personnel with limited knowledge of machine learning technique.

Keywords  Geosynthetics · Geocomposite drainage layer · Soil–Interface shear strength · Machine learning algorithm · 
Optimisation algorithm

Introduction

Geocomposite Drainage Layers (GDL) are increasingly 
applied in extensive geotechnical and geoenvironmental 
applications [1–3]. GDLs can replace the need for graded 
sand and gravel to effectively drain excess water and reduce 
pore water pressure, improving the stability of engineering 

projects [4]. Particularly for GDLs utilised in the capping 
and lining systems of landfills, they can also provide sepa-
ration and reinforcement functions and perform as a capil-
lary break to prevent the migration of contaminated water 
and gas produced from the waste [5]. In practical engineer-
ing, GDLs are commonly installed underneath cover soil 
above containment facilities, and the interface shear strength 
between GDL and cover soil governs the stability of the 
system [6].

Previously, many series of laboratory tests have been 
conducted to determine the shear strength along soil-GDL 
interfaces [7–11]. However, soil-GDL interface testing is 
expensive and time-consuming. Also significantly, in real 
engineering projects, the specific materials to be used on 
site are usually selected well after the design stage. This 
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allows a better pre-estimate of interface shear strength 
before the specific materials are determined.

Accurate forecasting models that can evaluate the shear 
strength of soil-GDL interfaces can substantially over-
come many of the existing challenges. Due to the com-
plex mechanism of soil-GDL interaction and the multiple 
influence variables of the shear strength along soil-GDL 
interfaces, it is difficult for the simplified empirical models 
established by adopting traditional statistical methods to 
adequately present the complicated non-linear relationship 
between the variables that influence the interface shear 
strength. This has driven the search for reliable methods 
with high accuracy to forecast the shear strength of soil-
GDL interfaces.

With the advance of computer science, the machine 
learning-based approach has attracted considerable scien-
tific attention and has been extensively adopted in geotech-
nical engineering to model complex non-linear relationship 
between multi-inputs and outputs [12–16]. Pham et al. [17] 
applied Particle Swarm Optimisation (PSO) -Adaptive Net-
work based Fuzzy Inference System (PANFIS), Genetic 
Algorithm (GA)—Adaptive Network based Fuzzy Infer-
ence System (GANFIS), Support Vector Regression (SVR), 
and Artificial Neural Networks (ANN), to predict the shear 
strength of soft soil. Their results show that the forecasting 
performance of the machine learning algorithms is satisfac-
tory. Qi et al. [18] put forward five machine learning mod-
els including logistic regression (LR), multilayer perceptron 
neural networks (MLPNN), decision tree (DT), gradient 
boosting machine (GBM), and SVR, optimised by adopting 
firefly algorithm (FA), to predict the stability of hanging 
walls, and the research denotes that the estimating accuracy 
of the models is appreciated. Ceryan et al. [14] compared the 
performance of ANN, and SVR with different kernel func-
tions in assessing the tensile strength of rock, and concluded 
that SVR with the least squares kernel function is more pow-
erful in predicting the tensile strength. Overall, based on the 
aforementioned analysis, machine learning techniques are 
efficient for describing the non-linear relationship in multi-
variable problems.

Compared to other topics in geotechnical engineering, the 
application of machine learning approaches in evaluating 
the peak shear strength along soil-geosynthetics interfaces 
is rare. Debnath and Dey [19] proposed an ANN model to 
predict the shear strength of cohesive soil-geosynthetics 
interfaces based on the input parameters: dry density and 
moisture content of soil, normal stress, adhesion and fric-
tional angle of the soil-geosynthetics interfaces. It is neces-
sary to optimise the algorithms to increase the forecasting 
precision of machine learning models and conduct compre-
hensive investigations and compare the applicability for dif-
ferent machine learning algorithms to assess the peak shear 
strength of soil-GDL interfaces.

In this paper, a comprehensive investigation and compari-
son of the applicability for five different machine learning 
models including, Backpropagation Artificial Neural Net-
work (BPANN) and Support Vector Machine (SVM), with 
hyperparameters optimised by Particle Swarm Optimisation 
Algorithm (PSO) and Genetic Algorithm (GA), respec-
tively, and Extreme Learning Machine (ELM) optimised by 
Exhaustive Method, in estimating the peak shear strength of 
soil-GDL interfaces was conducted. Also, the relative sig-
nificance of influence factors to the peak shear strength was 
analysed. After that, an empirical equation for assessing the 
peak shear strength was proposed to facilitate the peak shear 
strength prediction for geotechnical engineering personnel 
with limited knowledge of machine learning technique.

Machine Learning Algorithms 
and Optimisation Algorithms

This paper employs three types of machine learning algo-
rithms, namely, BPANN, SVM and ELM. For optimizing 
the algorithms, PSO and GA have been adopted. Among 
the various positive aspects of employing these algorithms, 
three key advantages can be highlighted.

1.	 They are mature and have standard procedures for the 
application [20].

2.	 Their widespread applicability in solving the issues of 
geotechnical engineering [21, 22].

3.	 They can accurately model the complex non-linear rela-
tionship between multiple independent variables and 
dependent variables [23].

A brief introduction and basic specifications of the 
employed machine learning and optimisation algorithms 
are presented below.

BPANN

Backpropagation Algorithm was the most popular algorithm 
adopted to build ANN models [24–26]. The BPANN model 
developed in the research is composed by an input layer 
for nine input parameters, a hidden layer for nine joints 
determined by the exhaustive method and an output layer, 
which outputs one output parameter (Fig. 1). Hyperbolic 
Tangent Sigmoid Transfer Function was utilised as the acti-
vation function in the proposed BPANN models with Leven-
berg–Marquardt Backpropagation Algorithm as the network 
training algorithm. Also, the initial weights and thresholds 
of each joint in the constructed BPANN model were opti-
mised by GA and PSO, respectively.
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SVM

SVM is based on the structural risk minimization principle 
and the maximum margin principle to conduct regression 
operations [27] that employ limited specimen data to estab-
lish the optimal regression models [28]. Another advantage 
of SVM is that it can use the kernel function to project the 
specimen data in a low-dimensional space to a high-dimen-
sional space to convert non-linear issues to linear issues, 
reducing computational cost and difficulty [29]. In this 
research, the penalty parameter g and c of kernel function 
were optimised by PSO and GA.

ELM

ELM has the similar structure with feedforward ANN, which 
is an efficient and time-saving tool to establish the complex 
relationship between multiple input and output parameters 
[30]. Compared to traditional ANN algorithms, ELM has 
better generalisation capability and high predictive preci-
sion. It is also able to avoid the drawbacks of traditional 
machine learning algorithms, such as local minima, slow 
regression speed, etc. [31]. For ELM, the number of hidden 
layer joints greatly impacts on its predictive performance 
[32]. Hence, in this research, the hidden layer joint number 
for the ELM model was determined as 53 by the exhaustive 
method, with input layer joint number 9 and output layer 
joint number 1. Additionally, Logarithmic Sigmoid Function 
was adopted as the activation function.

GA and PSO

GA is a heuristic population optimisation algorithm that 
adopts the principle of natural evolution in the algorithm 
[33]. GA selects individuals using the operations, including 
selection, cross and mutation, to retain individuals with a 

large fitness value and eliminate those with a small fitness 
value. The new generation has a higher fitness value com-
pared to that of the previous one.

PSO is another heuristic population optimization algo-
rithm, originating from the predation behaviour of birds. In 
PSO, every particle among the population stands for a possi-
ble solution to the targeted issue. The particle’s velocity con-
trols their motion, which is regulated by the particle’s and 
other particles’ motion experience to achieve the optimum 
individual solutions in the solution space, respectively, and 
through continuous iterations, finally achieving the optimal 
solution for the targeted issue [34].

Hyperparameters Optimization

All machine learning algorithms have several crucial hyper-
parameters that can influence their predictive performance 
significantly [35]. Thus, optimising the hyper-parameters 
of machine learning algorithms before conducting training 
operation is needful. In this research, GA and PSO were 
employed to optimise the hyperparameters for the estab-
lished BPANN and SVM models, using Root-Mean-Square 
Error (RMSE) (Eq. 1) as the fitness function. Previous 
researchers have demonstrated that GA and PSO are more 
capable of enhancing the machine learning models’ fore-
casting accuracy than other intelligence algorithms [36–38].

where, n is the specimen data number, yi is measured data, 
fi is forecasting value.

The detailed procedure of employing GA and PSO to 
optimise the machine learning models is in the following 
contents: (1) stochastically produce individuals/particles 
composed of diverse hyperparameter values (2) calculate the 
fitness value of the individuals according to fitness function 
(RMSE) through calling the counter machine learning model 
(3) conduct corresponding operations on the individuals/
particles (4) compute the individual/particle’s fitness value 
again (5) rerun Step 3 and Step 4 until reaching the prede-
termined ending conditions (6) take the individual/particle 
having the smallest RMSE value as the optimal individual/
particle, and take the optimal individual/particle’s hyperpa-
rameter values as the initial hyperparameter values of the 
built machine learning models (7) train the machine learning 
models, and carry out prediction, the specific optimising 
procedure being presented in Fig. 2, the detailed parameter 
specifications of GA and PSO as tabulated in Table 1.

In this case, the individuals/particles’ fitness value in 
GA and PSO was attained by adopting k-fold cross-valida-
tion method (k-CV) in hyperparameter optimisation. k-CV 

(1)RMSE =

√
∑n

i=1

(yi − fi)
2

n

Fig. 1   The structure of BPANN developed to predict
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is an extensively adopted method to validate the machine 
learning models, In k-CV, the original data are divided into 
k equal groups. The training of machine learning models 
is based on k − 1 groups, while the validating is con-
ducted on the remaining group. The training and validating 
process is repeated k times with different groups as the 
testing dataset. The average value of the k times forecast-
ing precision is finally adopted as the performance index 
[39]. In the paper, the training dataset of the established 
database was utilised as the original data to conduct the 
k-CV operation on the machine learning models to obtain 
the indicator value of predicted accuracy (RMSE), and 
k was taken as 10 considering the database size and the 
recommendation in literatures [40]. The optimum values 
of hyperparameters for the machine learning models and 
corresponding optimising ranges were listed in Table 2.

Methodology

Establishment of Database

The database adopted in this paper for the intelligent mod-
elling was obtained from 316 large direct shear tests on 
soil-GDL interface conducted by the authors, the manu-
facturer [41] and Othman [6, 42].

All of the GDLs comprising the interfaces within the 
database were produced by the same manufacturer. The 
GDL comprises a single cuspate HDPE (High Density Pol-
yethylene) drainage core with a medium weight non-woven 
needle-punched and heat-treated staple fibre polypropyl-
ene geotextile filter thermally bonded on the dimple side 
and a lighter geotextile on the flat side or only a medium 
weight geotextile on the dimple side, as shown in Fig. 3. 
There are two types of different drainage cores: continuous 
drainage core and drainage core with cut-outs, which are 
adopted for the GDL, as shown in Fig. 4, with the thick-
ness ranging from 4 to 7 mm. For the bonded geotextiles, 

Fig. 2   The flow chart of GA and PSO optimising

Table 1   The parameters of GA and PSO

Parameters GA PSO

The maximum iteration number 20 20
Population size 100 100
Possibility of crossover 0.4 ×
Possibility of mutation 0.2 ×
Inertia weight × 0.6
Acceleration factor c1 × 1.49
Acceleration factor c2 × 1.49
The maximum position of individuals × 5
The minimum position of individuals × − 5
The maximum speed of individuals × 1
The minimum speed of individuals × − 1
Fitness function RMSE RMSE

Table 2   The optimum hyperparameters values of the algorithms

Type Optimised method Hyperparameter Range

BPANN GA and PSO Initial weights of joints − 3 to 3
Initial threshold of joints − 3 to 3

Exhaustive method The number of hidden layer 
joints

1–100

SVM GA and PSO Penalty parameter c 2–5–25

Penalty parameter g 2–5–25

ELM Exhaustive method The number of hidden layer 
joints

1–100
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on the dimple side of the drainage core, the thickness of 
the geotextile is 1.75 mm, and on the flat side, the thick-
ness is 1.2 mm. Additionally, some GDLs are only bonded 
with geotextiles on the dimple side. The geotextiles were 
produced from the same manufacturer, the typical proper-
ties of the geotextiles as tabulated in Table 3.

The tests employed broadly categorised soils of three 
types: clay, sand and gravel. The density and moisture satu-
ration of the soils range from 1.36 to 2.01 g/cm3 and 0% to 
100%, respectively.

The interface peak shear strength of soil-GDL interfaces, 
under different normal stress ranging from 5 to 400 kPa, 
was measured utilising the large (~ 300 mm) direct shear 
apparatus. Most tests adopt the dimple side of GDL as the 
shearing surface during the experiments, while some tests 
used the flat side of GDL as the shearing surface. In several 
tests, the soils were consolidated for 24 h before shearing, 
while in the remaining tests, the soils were sheared directly 
after applying normal stress. The other operational proce-
dures were the same, including: fixation method of GDL, 
loading method and external environmental factors such as 
test temperature and humidity. In this case, most tests were 
implemented in dry condition. For the tests conducted in 

Fig. 3   Cross section of drainage core

Fig. 4   Plan view of drainage 
core

Table 3   The specific properties of the geotextiles

Parameters Dimple side Flat side

Thickness (mm) 1.75 1.2
Tensile strength (kN/m) 20 9.5
Pore size O90 (μm) 70 120
CBR puncture resistance (n) 3400 1600
Dynamic perforation cone drop (mm) 17 32
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submerged condition, the influence of submerged condition 
is reflected on the value of moisture saturation for soil, tak-
ing their moisture saturation as 100%.

Among the 316 tests, 107 tests were excluded since they 
lack a complete set of input parameters. The information of 
the remaining 209 tests was compiled and arranged to estab-
lish the database with 209 data groups. Each data group con-
sists of nine input parameters: soil type (T), soil density (D), 
moisture saturation of soil (W), normal stress ( �n ), shearing 
surface (dimple side or flat side) (F), thickness of drain-
age core (TH), type of drainage core (continuous drainage 
core or drainage core with cut-outs) (TY), geotextile speci-
fication (bonded on both sides or only dimple side) (GE), 
and consolidation condition (C). A single output param-
eter: peak shear strength ( � ) was adopted. The parameters 
were selected following the literature to have high impacts 
on the peak shear strength of soil-geosynthetic interfaces 
[20, 43, 44]. The statistics parameters of the selected input 
and output parameters, value range of input parameters, and 
data type are tabulated in Table 4. Figure 5 presents the 
data distribution of the compiled database. In Fig. 5, x axis 
represents input parameter values, and y axis represents the 
corresponding data group numbers in the database. In this 
study, the machine learning models were established using 
Matlab software. In the Matlab modelling script, the nomi-
nal variables were digitalised and categorized for training 
and testing the machine learning models. The corresponding 
digitalised values of the nominal variables have been speci-
fied in the brackets after the nominal variables, respectively, 
as presented in Table 4.

Data Pre‑Processing

In supervised learning, the database needs to be divided into 
two sub-datasets: the training dataset for model training, 

hyperparameter optimising, and model validation, and the 
testing dataset for verifying the predictive performance of 
models. The dividing ratio of the database influences the 
forecasting performance of models. The dividing ratio was 
determined after conducting optimisation analysis based on 
the recommendations in the existing literature to improve 
generalisation capability and avoid overfitting [19]. As 
such, the training and testing datasets comprise 80% (168 
groups) and 20% (41 groups) of the whole database, respec-
tively. Since the dimension of input parameters is various, 
the training duration and the forecasting precision may be 
influenced. To enhance the machine learning models’ pre-
dictive precision and efficacy, normalisation is conducted 
adopting Eq. (2).

where, xNormalised and x is normalized value and original 
value, respectively,xmin and xmax is the minimum and maxi-
mum value, respectively.

Performance Evaluation Methods

During the machine learning modelling, the k-CV was ini-
tially adopted to validate the goodness of fit for the machine 
learning models based on the training dataset, with k set as 
10. Then, testing dataset was used to assess their forecasting 
precision.

The performance of the proposed machine learning mod-
els was evaluated by three indexes:

(i)	  RMSE: RMSE can represent the standard errors 
between forecasting values and measured values. The 

(2)xNormalised =
2(x − xmin)

xmax − xmin

− 1

Table 4   The statistical parameters

Parameter Kind Minimum Maximum Mean Standard deviation

Testing Training Testing Training Testing Training Testing Training

Input
 Soil density Numeric 1.49 1.36 2.01 2.01 1.87 1.71 0.16 0.25
 Moisture saturation of soil 0 0 100 100 82.49 61.66 30.76 34.48
 Normal stress 0 0 60 100 27.93 25.36 14.81 34.30
 Thickness of drainage core 4 4 9 9 5.43 5,10 1.38 1.21
 Soil type Nominal Clay (1), sand (2), gravel (3)
 Shearing surface Flat side (1), dimple side (2)
 Type of drainage core Continuous drainage core (1), drainage core with cut-outs core (2)
 Geotextile specification Both sides bonded with geotextiles (1), only the dimple side bonded with geotextile (2)
 Consolidation condition Consolidation for 24 h (1), non-consolidation (2)

Output
 Shear strength Numeric 8.9 5.5 55.8 78.14 21.53 27.70 10.05 17.94
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lower the RMSE represents the more precise the algo-
rithm, which is defined as expressed in Eq. (1).

(ii)	 Correlation Coefficient (R): R reflects how well the 
association is between the variation in predictive values 
and the measured values. The R value ranges from − 1 
to 1, in which − 1 represents a totally negative correla-
tion and 1 represents a totally positive correlation. R is 
defined as shown in Eq. (3) [45].

where, cov(, ) is covariance, var[] is variance.

(3)R(fi, yi) =
cov(fi, yi)

√
var

[
fi
]
var

[
yi
]

(iii)	 Mean Absolute Percentage Error (MAPE): MAPE is 
a dimensionless index to assess the predictive preci-
sion of models. The closer MAPE is to 0, the better 
the predictive performance obtained by the model. The 
definition of MAPE is expressed in Eq. (4).

(iv)	 Coefficient of Determination (R2): R2 reflects how well 
the predicted value be close to the real value. R2 ranges 
0 to 1. An R2 of 1 means the perfect fitting between the 
predicted value and real value. The definition of R2 is 
shown in Eq. (5) [46].

(4)MAPE =
100%

n

∑n

i=1

||yi − fi
||

yi
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Fig. 5   Data distribution of the complied database
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(e) Shearing surface

(i) Consolidation condition 
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where, y is the average measured value.
(v)	 Wilmot’s Index of Agreement (WI): WI is a standard-

ized index to reflect the predictive accuracy of estab-
lished models and changes between 0 and 1. A WI of 1 
manifests a perfect agreement between predictive val-
ues and real values and a WI of 0 manifests no match 
at all. The definition of WI is shown in Eq. (6) [47, 48].

Results and Analysis

Results of Hyperparameter Optimisation

The optimum BPANN and ELM hidden layer joint numbers 
were ascertained by the exhaustive method, with RMSE as 
the accuracy indicator, being presented in Fig. 6.

According to Fig. 6, the RMSE of the BPANN models 
and ELM models with diverse joint numbers has relatively 
large difference, ranging from 42.99 to 11.04 and 913.51 
to 4.46, respectively. For the BPANN algorithm, the model 
with nine hidden layer joints has the least RMSE. In terms 
of the ELM algorithm, 53 is the optimal number of hidden 
layer joint.

The optimisation processes of BPANN model adopting 
GA and PSO, respectively, are presented in Fig. 7.

(5)R2 = 1 −

∑n

i=1
(yi − fi)

2

∑n

i=1
(yi − y)

(6)WI = 1 −

∑n

i=1
(yi − fi)

2

∑n

i=1
(��fi − y�� +

�
�yi − y��)

2

Based on Fig. 7, for both of the BPANN model and the 
SVM model, their RMSE decreases considerably with the 
rise in iteration number utilising GA and PSO algorithms, 
respectively. It indicates that GA and PSO are powerful in 
optimising the hyperparameters of the established BPANN 
and SVM models, which is able to improve the forecasting 
precision of the established machine learning models mark-
edly with satisfactory efficacy. More specifically, the opti-
misation effects on the machine learning models adopting 
PSO is larger than that of GA, with higher optimising mag-
nitude and efficiency. For example, when PSO was used, the 
RMSE of BPANN and SVM models becomes stable at the 
13rd and 16th iteration number, with value 3.68 and 5.23, 
respectively, while for GA, the RMSE stabilises at the 19th 
and 19th iteration number, with value 3.98 and 6.99, respec-
tively. When the predetermined maximum iteration number 
was reached, the hyperparameters of the optimal individual/
particle that has the smallest RMSE value in the population 
were taken as the initial parameters of the BPANN model 
and SVM model, respectively, as shown in Table 1.

Comparing the Forecasting Performance

The performance on predicting the training and testing data-
sets is shown in Figs. 8, 9, 10, 11, and 12.

Based on Figs. 8, 9, 10, and 11, PSOBPANN has the 
highest forecasting precision among the established models 
on predicting the training dataset on the basis of the statis-
tics indexes. More specifically, PSOBPANN achieved the 
lowest RMSE (3.69) and MAPE (8.61%) and the highest 
R2 (0.95), WI (0.99) and R (0.96). Additionally, overall, the 
forecasting accuracy of BPANN models is better than the 
SVM models. For example, the GABPANN model has 0.56 
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Fig. 6   Optimisation processes by the exhaustive method
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lower RMSE, 7.39% lower MAPE and 0.06 higher R than 
those of GASVM. Moreover, the machine learning algo-
rithms optimised by PSO have better performance than those 
optimised by GA. For instance, the PSOSVM model has 
0.11 lower RMSE, 1.07% lower MAPE and 0.04 higher R 
that those of GASVM.

In terms of the predictive capability for the testing data-
set, based on Figs. 9, 10, 11, and 12, it can be seen that the 
BPANN model optimised by PSO has the highest accuracy 
in forecasting the peak shear strength of soil-GDL interfaces, 
with RMSE of 4.13, MAPE of 11.10%, R2 of 0.93, WI of 
0.98, and R of 0.94, and the performance of GABPANN is 
poorer than that of PSOBPANN, with RMSE of 6.37, MAPE 
of 19.19% R2 of 0.87, WI of 0.96 and R of 0.93. Addition-
ally, as with the estimating results in training dataset, the 
assessing accuracy of the BPANN models is higher than 

those of SVM models, and the optimisation performance of 
PSO is superior to GA.

Sensitivity Analysis of the Influence Variables

Sensitivity analysis was conducted to investigate the relative 
significance of the input variables to the peak shear strength 
of soil-GDL interfaces. Since the BPANN model optimised 
by PSO was considered as the most successful model in fore-
casting the peak shear strength, the PSOBPANN model was 
adopted to conduct sensitivity analysis in this paper. The rel-
ative importance of the input parameters for the established 
PSOBPANN model was evaluated adopting Garson’s algo-
rithm that has been widely applied in geotechnical engineer-
ing to assess the variable contribution [49, 50]. Garson [51] 
proposed Garson’s Algorithm, later modified by Goh [52], 
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for determining the relative importance of input parameters 
to a network. The equation of Garson’s Algorithm is shown 
in Eq. (7). The relative importance of the input parameters 
is plotted in Fig. 13.

where Rik is the relative importance of input parameters, 
Wij,Wjk are the connection weights of the input layer-hidden 
layer and the hidden layer-output layer, i = 1, 2, …, N, k = 1, 
2, …, M (N, M are the numbers of the input parameters and 
output parameters).

(7)Rik =

∑L

j=1
(
���
WijWjk

���
∕
∑N

r=1

���
Wrj

���
)

∑N

i=1

∑L

j=1
(
��
�
WijWjk

��
�
∕
∑N

r=1

��
�
Wrj

��
�
)

Based on Fig. 13, normal stress is the most important vari-
able to affect the peak shear strength of soil-GDL interfaces, 
with proportion of 17.91%, followed by drainage core type, 
moisture saturation, soil type and shearing surface, with per-
centage of 14.68%, 13.78%, 10.91%, and 10.86%, respectively. 
In comparison, consolidation condition, geotextile specifica-
tion, soil density and drainage core thickness have slighter 
influences on the peak shear strength compared with the afore-
mentioned factors. The detailed mechanism analysis of the 
relative importance for the input parameters to the peak shear 
strength is conducted in Sect. 8.

Development of an Empirical Equation 
for Peak Shear Strength Prediction

In this research, the BPANN model optimised by PSO has 
been proved as an efficient tool for predicting the peak shear 
strength of soil-GDL interfaces. However, the application 
of the developed PSOBPANN model for geotechnical engi-
neering personnel with limited or no knowledge of machine 
learning techniques is of little use. To solve the problem, an 
empirical equation for forecasting the peak shear strength of 
soil-GDL interfaces was proposed based on the connection 
weights and biases of the PSOBPANN models, as shown in 
Eq. (8) [53]. The connection weights and biases of the PSOB-
PANN model are tabulated in Table 5.

where, Yn is the normalised predictive values, ranging from 
− 1 to 1; b0 is the biases of output layer joint; wk is the con-
nection weights between the kth hidden layer joint and the 
output layer joint; bhk is the biases of the kth hidden layer 

(8)Yn = fsig{b0 +
∑h

k=1
[wk × fsig(bhk +

∑m

i=1
wikXi)]}
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joint; h is the hidden layer joint number; wik is the connec-
tion weights between the ith input layer joint and kth hidden 
layer joint; Xi is the ith normalised input parameter, ranging 
from − 1 to 1; fsig is Hyperbolic Tangent Sigmoid Transfer 
Function.

After calculation, the empirical equation for assessing 
the peak shear strength of soil-GDL interfaces was gained, 
as expressed in Eq. (9).

where, Ymax and Ymin are the maximum and minimum val-
ues of the peak shear strength in the database, respectively, 
Ymax = 20.14 kPa and Ymin = 0.5 kPa.

Among Eq. (9):

(9)� = 0.5(Yn + 1)(Ymax − Ymin) + Ymin

Among Eq. (10):

where, gi is the connection weight between the ith hidden 
layer joint and the output layer joint for the established 
PSOBPANN model, as listed in Table 5.

Among Eq. (11):

where, hi is the bias of the jth hidden layer joint for the 
established PSOBPANN model, as listed in Table 5; pj is 
the connection weight between the jth input layer joint and 
ith hidden layer joint for the established PSOBPANN model, 
as listed in Table 5; Nj is the ith normalised input parameter.

Case Study

To facilitate the practitioners and future researchers to uti-
lise the developed empirical equation (Eq. 8) to predict the 
peak shear strength of soil-GDL interfaces, a case study is 
conducted in this session to use Eq. (8) to assess the peak 
shear strength of clayey soil-GDL interfaces based on a 
numerical example with real values, and then the predictive 
peak shear strength of interfaces is compared with the peak 
shear strength that is measured in laboratory tests to validate 
the predictive accuracy of the developed empirical equa-
tion. The basic properties of the adopted soil-GDL interface 
and the corresponding input parameter value of the machine 
learning models are presented in Table 6.

(10)Yn =
eC1 − e−C1

eC1 + e−C1

(11)C1 = 0.42 +
∑9

i=1
gi ×

eAi − e−Ai

eAi + e−Ai

(12)Ai = hi +
∑9

j=1
pj × Nj
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Table 5   Connection weights and biases of the established PSOBPANN model

Hidden 
Joint 
number

Weights Biases

Input parameters Output parameter Hidden layer Output layer

T D W �
n

F TH TY GE C �

1 0.46 − 0.20 − 1.60 − 0.95 0.89 − 2.24 − 1.92 − 2.03 − 2.79 − 0.56 0.46 0.42
2 − 0.56 − 0.62 1.45 − 1.28 − 0.16 2.29 − 1.84 − 0.03 1.01 2.94 − 0.56
3 1.22 − 0.30 2.54 0.31 − 0.12 − 2.48 0.79 − 0.88 0.69 0.84 1.22
4 0.26 − 1.16 1.51 − 0.38 0.32 0.13 1.96 − 0.37 − 1.92 − 1.57 0.26
5 − 0.46 − 1.06 − 2.04 0.11 − 1.68 0.19 0.98 − 0.71 − 0.80 0.65 − 0.46
6 − 0.55 1.22 − 2.25 − 3.08 − 0.13 2.30 − 1.61 2.29 − 3.19 − 0.91 − 0.55
7 − 2.21 − 1.02 − 0.83 0.33 − 2.25 − 1.20 − 3.09 − 3.19 − 2.43 − 0.87 − 2.21
8 − 1.92 − 1.02 0.27 − 0.03 − 0.89 − 0.33 − 1.89 0.01 1.92 − 1.96 − 1.92
9 − 4.90 0.96 − 0.56 − 1.84 1.59 0.05 0.25 − 2.62 5.67 0.91 − 4.90
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The detailed procedure of using the developed empirical 
equation (Eq. 8) to predict the peak shear strength of soil-
GDL interfaces is following: firstly, the corresponding input 
parameter values of the interface in Table 6 are normalised 
by Eq. (2). Secondly, the normalised input parameter val-
ues are substituted into Eq.  (12) to calculate the values 
of Ai (i = 1, …, 9), with combining the values of hi (i = 1, 
…, 9) and pj (j = 1, …, 9) in Table 5, respectively. Thirdly, 
the obtained values of Ai (i = 1, …, 9) are substituted into 
Eq. (11) to calculate the value of C1, with combining the 
values of gi (i = 1, …, 9) in Table 5. Fourthly, the obtained 
value of C1 is substituted into Eq. (10) to calculate the value 
of Yn. Finally, the obtained value of Yn is substituted into 
Eq. (9) to be renormalised to obtain the value of � that is the 
predictive peak shear strength of the interface. The predic-
tive peak shear strength of the interface using the developed 
empirical equation and the measured peak shear strength in 
laboratory tests is drawn in Fig. 14.

Based on Fig. 14, the predicted peak shear strength of 
the interface is close to the measured peak shear strength by 

laboratory tests. This indicates that the developed empirical 
equation (Eq. 8) has high accuracy to predict the peak shear 
strength of soil-GDL interfaces. It provides convenience for 
geotechnical engineering personnel with limited knowledge 
of machine learning technique to forecast the peak shear 
strength of soil-GDL interfaces.

Discussion

According to the sensitivity analysis results, normal stress 
has the largest influence on the peak shear strength of soil-
GDL interfaces. This fact conforms to the findings high-
lighted by the previous studies [54–56]. Furthermore, 
drainage core type (continuous drainage core or drainage 
core with cut-outs) and moisture saturation affect the peak 
shear strength as the second and third most influencing fac-
tors. As shown in Fig. 15, the interlocking effects between 
the grooves in geogrid core and soil, leading in superior 
frictional performance, would have resulted in the higher 
peak shear strength between soil-GDL with drainage core 

Table 6   The basic properties 
of the adopted interface and the 
corresponding input parameter 
value

Parameter Basic properties Input 
parameter 
value

Soil density 1.93 g/cm3 1.93
Moisture saturation of soil 11.76% 100
Normal stress 25 kPa 25
Thickness of drainage core 6 mm 6
Soil type Clayey soil 1
Shearing surface Dimple side 2
Type of drainage core Continuous drainage core 1
Geotextile specification Both sides bonded with geotextiles 1
Consolidation condition Consolidation for 24 h 1
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Fig. 15   The interlocking mechanism between geogrid drainage core 
and soil
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with cut-outs than that of GDL with continuous drainage 
core. In terms of the moisture saturation, the large impact of 
moisture saturation on the peak shear strength of soil-GDL 
interfaces agrees with the findings from Othman [6].

Shearing surface (flat side or dimple side), soil type 
(clay, sand and gravel), and consolidation condition are 
demonstrated to have moderate influence on the peak shear 
strength. The difference of shear strength for the interfaces 
between geosynthetics and different types of soil has been 
reported by many scholars due to the diverse basic properties 
of soil, including particle shape/angularity, mean grain size, 
hardness, etc. [44, 57, 58]. In terms of the shearing surface, 
when the dimple side of GDL is adopted as the shearing 
surface, the interlocking effects between soil and the dimple 
drainage core can provide larger shear resistance, leading 
to higher peak shear strength along the interfaces than that 
of flat side. The magnitude of interlocking effects enhances 
with the rise of compaction effort during soil placement, 
normal stress and moisture saturation, the detailed interac-
tion mechanism between soil and GDL as shown in Fig. 16. 
In this research, a majority of tests were conducted on soil 
with low to medium moisture saturation (0%–50%) under 
low normal stress (less than 60 kPa), and the compaction 
efforts during soil placement was light, as shown in Fig. 5, 
with a medium interlocking effect between soil and drainage 
core. Therefore, the relative importance of shearing surface 
to the shear strength is manifested to be moderate. In the 
aspect of consolidation condition, previous studies have 
indicated that consolidation can increase the shear strength 
of cohesive soil-geosynthetics interfaces evidently [59, 60]. 
However, in this research, the tests on cohesive soil-GDL 

interfaces only account for about 40% of the total tests, as 
shown in Fig. 5, and other tests were performed on sand 
and gravel-GDL interfaces. The influence of consolidation 
condition on the shear strength of sand/gravel-GDL inter-
faces is not very high. Hence, the relative importance of 
consolidation condition to the shear strength is indicated as 
being not very significant.

The variations of input parameters including: geotextile 
specification (bonding geotextile on both sides or only on 
the dimple side), soil density, and drainage core thickness 
are not shown to be vital to the peak shear strength. For the 
geotextile specification, in the compiled tests, the GDL was 
clamped firmly on the lower shear box of the direct shear 
apparatus. When the dimple side was adopted as the shear-
ing surface, the bonded geotextile on the flat side has negli-
gible influence on the shear strength, while when the flat side 
was chosen as the shearing surface, the bonded geotextile 
can provide larger friction force, resulting in the higher peak 
shear strength than that of GDL only bonded geotextile on 
the dimple side. However, in this research, a large propor-
tion of compiled tests (80%) were conducted on the inter-
faces between soil and the dimple side of GDL, as shown 
in Fig. 5, thus, the relative importance of geotextile speci-
fication to the shear strength is demonstrated to be low. In 
terms of soil density, according to the existing research, the 
peak shear strength of the interfaces is mobilised from two 
components: the skin friction and the interlocking effects 
between soil and geosynthetics [44]. The effects of soil den-
sity on the interlocking effects are relatively large but on 
the skin friction is non-obvious [61]. In this research, based 
on Fig. 5, most of tests were carried out under low normal 

Fig. 16   The interaction mecha-
nism between soil and GDL 
(after Chao and Fowmes [67])
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stress, and the interlocking effects between soil and GDL 
are not the dominant factor for generating shear resistance, 
as illustrated in Fig. 16. Thus, the variation of soil density is 
manifested to have less influence on the peak shear strength. 
In the aspect of drainage core thickness, the influence of its 
changes on the peak shear strength is the least among the 
input parameters. This is because, in this case, the variation 
in the thickness of drainage core does not change the dimen-
sion of the cuspate elements on the drainage core, which has 
marginal influences on the interlocking effects and skin fric-
tion between soil and GDL, contributing less to the change 
of the peak shear strength.

Limitations

The predictive precision and reliability of the established 
machine learning models can be improved further when a 
larger database is available, whilst some larger databases of 
geosynthetics tests exist the data is often incomplete mak-
ing the application of machine learning impossible [62–66]. 
Secondly, there may some other influence variables for the 
peak shear strength of soil-GDL interfaces which were 
ignored during the compilation of database for modelling, 
such as mean grain size of soil, etc. In the future, it is wor-
thy to adopt more influencing variables to conduct machine 
learning modelling, which may enhance the predictive abil-
ity of the machine learning models. Thirdly, the value ranges 
of some adopted input parameters, such as normal stress, 
moisture saturation of soil, etc., are small, thus, an attempt 
to expand the value ranges of some input parameters can 
further increase the generalisation ability of the established 
machine learning models and have a better understanding 
about the relative importance of the influence variables to 
the peak shear strength.

Conclusions

In this paper, based on the compiled database, an investiga-
tion and comparison of the applicability for five different 
machine learning models including, BPANN and SVM, 
with hyperparameters optimised by PSO and GA, respec-
tively, and ELM optimised by Exhaustive Method, in pre-
dicting the peak shear strength of soil-GDL interfaces was 
conducted. Also, the sensitivity analysis was conducted to 
assess the relative significance of influence variables based 
on the PSOBPANN model with the optimal estimating per-
formance among the forecasting models, and corresponding 
mechanism analysis was performed. Moreover, to facilitate 
the forecasting of the peak shear strength for geotechnical 
engineering personnel, an empirical equation for assessing 
the peak shear strength based on the PSOBPANN model 

was proposed. Based on the results and discussion presented 
earlier, the following major conclusions can be made:

1.	 GA and PSO can improve the forecasting precision of 
the built machine learning models markedly in a small 
number of iterations.

2.	 Among the established models, the PSOBPANN model 
has the best predictive precision, on the basis of the sta-
tistics indexes: RMSE, R, R2, WI, and MAPE.

3.	 Overall, the BPANN models have better performance 
in predicting the peak shear strength of soil-GDL inter-
faces than that of the SVM models, and the optimisation 
performance adopting PSO is superior to that of GA.

4.	 The sensitivity analysis indicates that that normal stress 
is the biggest influence factor to peak shear strength of 
soil-GDL interfaces, followed by drainage core type, 
moisture saturation, shearing surface, soil type, consoli-
dation condition, geotextile specification, soil density 
and drainage core thickness.

5.	 Based on the mechanism analysis, the ranking of the 
relative importance for input parameters is affected 
partly by the data distribution of input parameters in the 
database, thus, it is worthy to construct a database with 
more even data distribution of input parameters.

6.	 An empirical equation developed from the PSOBPANN 
model was presented to assess the peak shear strength 
of soil-GDL interfaces, which provides convenience for 
geotechnical engineering personnel with limited knowl-
edge of machine learning technique. The high predictive 
accuracy of the developed empirical equation has also 
been validated by comparing the predictive peak shear 
strength with the measured value in laboratory tests.
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