43 research outputs found

    Host Range of Cotton Flea Beetle (Podagrica puncticollis) in a Hot Dry Tropical Environment of Ethiopia

    Get PDF
    Cotton flea beetle, Podagrica puncticollis is the most destructive insect pest of cotton in north-western part of Ethiopia. This study was conducted to identify and determine the host range of cotton flea beetle in Metema area. The field survey was undertaken from June 27, 2015 to January 9, 2016 in ten kebele administrations of the district. At least three fields were prospected after every 15 days, in each kebele for host plants as well as to determine population density and percent leaf damage by adult cotton flea beetle, at different growth stages of cotton plant. The composition of plant species with damaged symptom or infested by flea beetle was analysed using quantitative means and identified by comparing specimens with description of identification manuals. A total of 11 host plant species of cotton flea beetle were identified in the cotton growing areas of Metema throughout a season. Indigofera longibarbata (Fabaceae), Hibiscus articulatus, H. cannabinus, H. vitifolius, Abutilon figarianum, Sida alba and S. urens (Malvaceae), Bidens pilosa and B. setigera (Asteraceae), Corchorus olitorius and C. trilocularis (Tiliaceae) found to be common host plants of cotton flea beetle. Thus, among the host plants, H. vitifolius, H. cannabinus, H. articulatus, C. olitorius and C. trilocularis were the most suitable hosts for adult cotton flea beetle in respect of the number of adults per plant and percent foliage damage they sustained. These findings could aid in developing longterm management strategies for this important insect pest existing in a hot dry tropical environment of north-western Ethiopia

    Traditional systems and development interventions in LVIA experience in Moyale, pastoral area of Southern Ethiopia

    No full text
    Pastoral development has been a field of fierce confrontation and experimentation throughout the last fifty years. The 12-years experience of an integrated project carried out by an international NGO in Southern Ethiopia is presented, focusing on two inter-related aspects: animal health and natural resources management. The peculiar aspects of the area are described, considering the traditional management systems and their integration in the modern context. Based on some specific project activities (modern water schemes development, community-based animal health program, vaccination campaigns) outcomes and problem raised are discussed, coming out with some general considerations

    Prevalence of trachoma at sub-district level in Ethiopia : determining when to stop mass azithromycin distribution

    Get PDF
    To eliminate blinding trachoma, the World Health Organization emphasizes implementing the SAFE strategy, which includes annual mass drug administration (MDA) with azithromycin to the whole population of endemic districts. Prevalence surveys to assess impact at the district level are recommended after at least 3 years of intervention. The decision to stop MDA is based on a prevalence of trachomatous inflammation follicular (TF) among children aged 1-9 years below 5% at the sub-district level, as determined by an additional round of surveys limited within districts where TF prevalence is below 10%. We conducted impact surveys powered to estimate prevalence simultaneously at the sub-district and district in two zones of Amhara, Ethiopia to determine whether MDA could be stopped.; Seventy-two separate population-based, sub-district surveys were conducted in 25 districts. In each survey all residents from 10 randomly selected clusters were screened for clinical signs of trachoma. Data were weighted according to selection probabilities and adjusted for correlation due to clustering.; Overall, 89,735 residents were registered from 21,327 households of whom 72,452 people (80.7%) were examined. The prevalence of TF in children aged 1-9 years was below 5% in six sub-districts and two districts. Sub-district level prevalence of TF in children aged 1-9 years ranged from 0.9-76.9% and district-level from 0.9-67.0%. In only one district was the prevalence of trichiasis below 0.1%.; The experience from these zones in Ethiopia demonstrates that impact assessments designed to give a prevalence estimate of TF at sub-district level are possible, although the scale of the work was challenging. Given the assessed district-level prevalence of TF, sub-district-level surveys would have been warranted in only five districts. Interpretation was not as simple as stopping MDA in sub-districts below 5% given programmatic challenges of exempting sub-districts from a highly regarded programme and the proximity of hyper-endemic sub-districts

    Use of Clinical Decision Support to Increase Influenza Vaccination: Multi-year Evolution of the System

    No full text
    Despite recognition that clinical decision support (CDS) can improve patient care, there has been poor penetration of this technology into healthcare settings. We used CDS to increase inpatient influenza vaccination during implementation of an electronic medical record, in which pharmacy and nursing transactions increasingly became electronic. Over three influenza seasons we evaluated standing orders, provider reminders, and pre-selected physician orders. A pre-intervention cross-sectional survey showed that most patients (95%) met criteria for vaccination. During our intervention, physicians were increasingly likely to accept pre-selected vaccination orders, Year 1 (47%), Year 2 (77%), Year 3 (83%); however vaccine administration by nurses was suboptimal. As electronic medical record functionality improved, patient receipt of vaccine increased dramatically, Year 1 [0/36; 0%], Year 2 [8/66; 12%], Year 3 [286/805; 36%]. Successful use of clinical decision support to increase inpatient influenza vaccination only occurred after initiation of CPOE for all medications and integration of an electronic medication administration record. Also, since most patients met criteria for influenza vaccination, complicated logic to identify high-risk patients was unnecessary

    Estimation of insecticide persistence, biological activity and mosquito resistance to PermaNet® 2 long-lasting insecticidal nets over three to 32 months of use in Ethiopia

    No full text
    Background: Information is needed on the expected durability of insecticidal nets under operational conditions. The persistence of insecticidal efficacy is important to estimate the median serviceable life of nets under field conditions and to plan for net replacement. Methods: Deltamethrin residue levels were evaluated by the proxy method of X-ray fluorescence spectrometry on 189 nets used for three to six months from nine sites, 220 nets used for 14-20 months from 11 sites, and 200 nets used for 26-32 months from ten sites in Ethiopia. A random sample of 16.5-20% of nets from each time period (total 112 of 609 nets) were tested by bioassay with susceptible mosquitoes, and nets used for 14-20 months and 26-32 months were also tested with wild caught mosquitoes. Results: Mean insecticide levels estimated by X-ray fluorescence declined by 25.9% from baseline of 66.2 (SD 14.6) mg/m2 at three to six months to 44.1 (SD 21.2) mg/m2 at 14-20 months and by 30.8% to 41.1 (SD 18.9) mg/m2 at 26-32 months. More than 95% of nets retained greater than 10 mg/m2 of deltamethrin and over 79% had at least 25 mg/m2 at all time periods. By bioassay with susceptible Anopheles, mortality averaged 89.0% on 28 nets tested at three to six months, 93.3% on 44 nets at 14-20 months and 94.1% on 40 nets at 26-32 months. With wild caught mosquitoes, mortality averaged 85.4% (range 79.1 to 91.7%) at 14-20 months but had dropped significantly to 47.2% (39.8 to 54.7%) at 26-32 months. Conclusions: Insecticide residue level, as estimated by X-ray fluorescence, declined by about one third between three and six months and 14-20 months, but remained relatively stable and above minimum requirements thereafter up to 26-32 months. The insecticidal activity of PermaNet® 2.0 long-lasting insecticidal nets in the specified study area may be considered effective to susceptible mosquitoes at least for the duration indicated in this study (32 months). However, results indicated that resistance in the wild population is already rendering nets with optimum insecticide concentrations less effective in practice

    Physical durability of PermaNet 2.0 long-lasting insecticidal nets over three to 32 months of use in Ethiopia

    Get PDF
    Background: Ethiopia scaled up net distribution markedly starting in 2006. Information on expected net life under field conditions (physical durability and persistence of insecticidal activity) is needed to improve planning for net replacement. Standardization of physical durability assessment methods is lacking.\ud \ud Methods: Permanet®2.0 long-lasting insecticidal bed nets (LLINs), available for distribution in early 2007, were collected from households at three time intervals. The number, size and location of holes were recorded for 189 nets used for three to six months from nine sites (2007) and 220 nets used for 14 to 20 months from 11 sites (2008). In 2009, a "finger/fist" sizing method classified holes in 200 nets used for 26 to 32 months from ten sites into small (<2 cm), medium (> = 2 to < =10 cm) and large (>10 cm) sizes. A proportionate hole index based on both hole number and area was derived from these size classifications.\ud \ud Results: After three to six months, 54.5% (95% CI 47.1-61.7%) of 189 LLINs had at least one hole 0.5 cm (in the longest axis) or larger; mean holes per net was 4.4 (SD 8.4), median was 1.0 (Inter Quartile Range [IQR] 0–5) and median size was 1 cm (IQR 1–2). At 14 to 20 months, 85.5% (95% CI 80.1-89.8%) of 220 nets had at least one hole with mean 29.1 (SD 50.1) and median 12 (IQR 3–36.5) holes per net, and median size of 1 cm (IQR 1–2). At 26 to 32 months, 92.5% of 200 nets had at least one hole with a mean of 62.2 (SD 205.4) and median of 23 (IQR 6–55.5) holes per net. The mean hole index was 24.3, 169.1 and 352.8 at the three time periods respectively. Repairs were rarely observed. The majority of holes were in the lower half of the net walls. The proportion of nets in 'poor' condition (hole index >300) increased from 0% at three to six months to 30% at 26 to 32 months.\ud \ud Conclusions: Net damage began quickly: more than half the nets had holes by three to six months of use, with 40% of holes being larger than 2 cm. Holes continued to accumulate until 92.5% of nets had holes by 26 to 32 months of use. An almost complete lack of repairs shows the need for promoting proper use of nets and repairs, to increase LLIN longevity. Using the hole index, almost one third of the nets were classed as unusable and ineffective after two and a half years of potential use
    corecore