3,777 research outputs found
Doppler Spectroscopy of an Ytterbium Bose-Einstein Condensate on the Clock Transition
We describe Doppler spectroscopy of Bose-Einstein condensates of ytterbium
atoms using a narrow optical transition. We address the optical clock
transition around 578 nm between the and states with a
laser system locked on a high-finesse cavity. We show how the absolute
frequency of the cavity modes can be determined within a few tens of kHz using
high-resolution spectroscopy on molecular iodine. We show that optical spectra
reflect the velocity distribution of expanding condensates in free fall or
after releasing them inside an optical waveguide. We demonstrate sub-kHz
spectral linewidths, with long-term drifts of the resonance frequency well
below 1 kHz/hour. These results open the way to high-resolution spectroscopy of
many-body systems
Depletion of carriers and negative differential conductivity in an intrinsic graphene under a dc electric field
The heating of carriers in an intrinsic graphene under an abrupt switching
off a dc electric field is examined taking into account both the energy
relaxation via acoustic and optic phonons and the interband
generation-recombination processes. The later are caused by the interband
transitions due to optical phonon modes and thermal radiation. Description of
the temporal and steady-state responses, including the nonequilibrium
concentration and energy as well as the current-voltage characteristics, is
performed. At room temperature, a nearly-linear current-voltage characteristic
and a slowly-varied concentration take place for fields up to -- 20 kV/cm.
Since a predominant recombination of high-energy carriers due to optical phonon
emission at low temperatures, a depletion of concentration takes place below --
250 K. For lower temperatures the current tends to be saturated and a negative
differential conductivity appears below -- 170 K in the region of fields -- 10
V/cm.Comment: 8 pages, 10 figures, extended versio
Serological prevalence and factors associated with human trichinellosis and cysticercosis in Hoa Binh Province, Northwest Vietnam
The Hanle Effect in 1D, 2D and 3D
This paper addresses the problem of scattering line polarization and the
Hanle effect in one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) media for the case of a two-level model atom without
lower-level polarization and assuming complete frequency redistribution. The
theoretical framework chosen for its formulation is the QED theory of Landi
Degl'Innocenti (1983), which specifies the excitation state of the atoms in
terms of the irreducible tensor components of the atomic density matrix. The
self-consistent values of these density-matrix elements is to be determined by
solving jointly the kinetic and radiative transfer equations for the Stokes
parameters. We show how to achieve this by generalizing to Non-LTE polarization
transfer the Jacobi-based ALI method of Olson et al. (1986) and the iterative
schemes based on Gauss-Seidel iteration of Trujillo Bueno and Fabiani Bendicho
(1995). These methods essentially maintain the simplicity of the
Lambda-iteration method, but their convergence rate is extremely high. Finally,
some 1D and 2D model calculations are presented that illustrate the effect of
horizontal atmospheric inhomogeneities on magnetic and non-magnetic resonance
line polarization signals.Comment: 14 pages and 5 figure
Highly efficient synthesis of the tricyclic core of Taxol by cascade metathesis
An efficient enantioselective synthesis of the ABC tricyclic core of the anticancer drug Taxol is reported. The key step of this synthesis is a cascade metathesis reaction, which leads in one operation to the required tricycle if appropriate fine-tuning of the dienyne precursor is performed
A review of potential contaminants in Australian livestock feeds and proposed guidance levels for feed
Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO
Magnetic versus crystal field linear dichroism in NiO thin films
We have detected strong dichroism in the Ni x-ray absorption
spectra of monolayer NiO films. The dichroic signal appears to be very similar
to the magnetic linear dichroism observed for thicker antiferromagnetic NiO
films. A detailed experimental and theoretical analysis reveals, however, that
the dichroism is caused by crystal field effects in the monolayer films, which
is a non trivial effect because the high spin Ni ground state is not
split by low symmetry crystal fields. We present a practical experimental
method for identifying the independent magnetic and crystal field contributions
to the linear dichroic signal in spectra of NiO films with arbitrary
thicknesses and lattice strains. Our findings are also directly relevant for
high spin and systems such as LaFeO, FeO,
VO, LaCrO, CrO, and Mn manganate thin films
Results from 730 kg days of the CRESST-II Dark Matter Search
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via
elastic scattering off nuclei in CaWO crystals, completed 730 kg days of
data taking in 2011. We present the data collected with eight detector modules,
each with a two-channel readout; one for a phonon signal and the other for
coincidently produced scintillation light. The former provides a precise
measure of the energy deposited by an interaction, and the ratio of
scintillation light to deposited energy can be used to discriminate different
types of interacting particles and thus to distinguish possible signal events
from the dominant backgrounds. Sixty-seven events are found in the acceptance
region where a WIMP signal in the form of low energy nuclear recoils would be
expected. We estimate background contributions to this observation from four
sources: 1) "leakage" from the e/\gamma-band 2) "leakage" from the
\alpha-particle band 3) neutrons and 4) Pb-206 recoils from Po-210 decay. Using
a maximum likelihood analysis, we find, at a high statistical significance,
that these sources alone are not sufficient to explain the data. The addition
of a signal due to scattering of relatively light WIMPs could account for this
discrepancy, and we determine the associated WIMP parameters.Comment: 17 pages, 13 figure
Hanle effect in the CN violet system with LTE modeling
Weak entangled magnetic fields with mixed polarity occupy the main part of
the quiet Sun. The Zeeman effect diagnostics fails to measure such fields
because of cancellation in circular polarization. However, the Hanle effect
diagnostics, accessible through the second solar spectrum, provides us with a
very sensitive tool for studying the distribution of weak magnetic fields on
the Sun. Molecular lines are very strong and even dominate in some regions of
the second solar spectrum. The CN system is
one of the richest and most promising systems for molecular diagnostics and
well suited for the application of the differential Hanle effect method. The
aim is to interpret observations of the CN
system using the Hanle effect and to obtain an estimation of the magnetic field
strength. We assume that the CN molecular layer is situated above the region
where the continuum radiation is formed and employ the single-scattering
approximation. Together with the Hanle effect theory this provides us with a
model that can diagnose turbulent magnetic fields. We have succeeded in fitting
modeled CN lines in several regions of the second solar spectrum to
observations and obtained a magnetic field strength in the range from 10--30 G
in the upper solar photosphere depending on the considered lines.Comment: Accepted for publication in Astronomy and Astrophysic
Structure-Guided Directed Evolution of Highly Selective P450-Based Magnetic Resonance Imaging Sensors for Dopamine and Serotonin
New tools that allow dynamic visualization of molecular neural events are important for studying the basis of brain activity and disease. Sensors that permit ligand-sensitive magnetic resonance imaging (MRI) are useful reagents due to the noninvasive nature and good temporal and spatial resolution of MR methods. Paramagnetic metalloproteins can be effective MRI sensors due to the selectivity imparted by the protein active site and the ability to tune protein properties using techniques such as directed evolution. Here, we show that structure-guided directed evolution of the active site of the cytochrome P450‐BM3 heme domain produces highly selective MRI probes with submicromolar affinities for small molecules. We report a new, high‐affinity dopamine sensor as well as the first MRI reporter for serotonin, with which we demonstrate quantification of neurotransmitter release in vitro. We also present a detailed structural analysis of evolved cytochrome P450‐BM3 heme domain lineages to systematically dissect the molecular basis of neurotransmitter binding affinity, selectivity, and enhanced MRI contrast activity in these engineered proteins
- …
