3,185 research outputs found

    Sewing sound quantum flesh onto classical bones

    Full text link
    Semiclassical transformation theory implies an integral representation for stationary-state wave functions ψm(q)\psi_m(q) in terms of angle-action variables (Ξ,J\theta,J). It is a particular solution of Schr\"{o}dinger's time-independent equation when terms of order ℏ2\hbar^2 and higher are omitted, but the pre-exponential factor A(q,Ξ)A(q,\theta) in the integrand of this integral representation does not possess the correct dependence on qq. The origin of the problem is identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix adequately in A(q,Ξ)A(q,\theta) a factor which is a function of the action JJ written in terms of qq and Ξ\theta. A prescription for an improved choice of this factor, based on succesfully reproducing the leading behaviour of wave functions in the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the Residue Theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical expressions for the stationary-state wave functions of the various potential models considered (namely, a P\"{o}schl-Teller oscillator and the Morse oscillator).Comment: RevTeX4, 6 page

    The Open Cluster Distance Scale: A New Empirical Approach

    Get PDF
    We present new BVRI photometry for a sample of 54 local G and K stars with accurate Hipparcos parallaxes in the metallicity range -0.4 < [Fe/H] < +0.3. We use this sample to develop a completely model-independent main sequence (MS) fitting method which we apply to 4 open clusters - the Hyades, Praesepe, the Pleiades and NGC 2516 - which all have direct Hipparcos parallax distance determinations. Comparison of our MS-fitting results with distances derived from Hipparcos parallaxes enables us to explore whether the discrepancy between the Hipparcos distance scale and other MS-fitting methods found for some clusters is a consequence of model assumptions. We find good agreement between our results and the Hipparcos ones for the Hyades and Praesepe. For the Pleiades and NGC 2516, when adopting the solar abundance determined from spectroscopy, we find significant disagreement at a level similar to that found by other MS-fitting studies. However, the colour-colour relationship for both these clusters suggests that their metallicity is significantly subsolar. Since the MS-fitting method relies on matching the cluster colours to a template MS, we argue that, when applying this method, the appropriate metallicity to adopt is the photometric subsolar one, not the solar abundance indicated by spectroscopy. Adopting photometric metallicities for all 4 clusters, we find complete agreement with the Hipparcos results and hence we conclude that the mismatch between the spectroscopic and photometric abundances for the Pleiades and NGC 2516 is responsible for the discrepancies in distance estimates found by previous studies. The origin of this mismatch in abundance scales remains an unsolved problem and some possible causes are discussed

    Friedmann Equation for Brans Dicke Cosmology

    Full text link
    In the context of Brans-Dicke scalar tensor theory of gravitation, the cosmological Friedmann equation which relates the expansion rate HH of the universe to the various fractions of energy density is analyzed rigorously. It is shown that Brans-Dicke scalar tensor theory of gravitation brings a negligible correction to the matter density component of Friedmann equation. Besides, in addition to ΩΛ\Omega_{\Lambda} and ΩM\Omega_{M} in standard Einstein cosmology, another density parameter, ΩΔ\Omega_{_{\Delta}}, is expected by the theory. This implies that if ΩΔ\Omega_{_{\Delta}} is found to be nonzero, data will favor this model instead of the standard Einstein cosmological model with cosmological constant and will enable more accurate predictions for the rate of change of Newtonian gravitational constant in the future.Comment: minor reference change

    A Force-Balanced Control Volume Finite Element Method for Multi-Phase Porous Media Flow Modelling

    Get PDF
    Dr D. Pavlidis would like to acknowledge the support from the following research grants: Innovate UK ‘Octopus’, EPSRC ‘Reactor Core-Structure Re-location Modelling for Severe Nuclear Accidents’) and Horizon 2020 ‘In-Vessel Melt Retention’. Funding for Dr P. Salinas from ExxonMobil is gratefully acknowledged. Dr Z. Xie is supported by EPSRC ‘Multi-Scale Exploration of Multi-phase Physics in Flows’. Part funding for Prof Jackson under the TOTAL Chairs programme at Imperial College is also acknowledged. The authors would also like to acknowledge Mr Y. Debbabi for supplying analytic solutions.Peer reviewedPublisher PD

    Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    Get PDF
    © 2016 .A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    A multiscale view on inverse statistics and gain/loss asymmetry in financial time series

    Full text link
    Researchers have studied the first passage time of financial time series and observed that the smallest time interval needed for a stock index to move a given distance is typically shorter for negative than for positive price movements. The same is not observed for the index constituents, the individual stocks. We use the discrete wavelet transform to illustrate that this is a long rather than short time scale phenomenon -- if enough low frequency content of the price process is removed, the asymmetry disappears. We also propose a new model, which explain the asymmetry by prolonged, correlated down movements of individual stocks

    Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection

    Get PDF
    The driven non-linear duffing osillator is a very good, and standard, example of a quantum mechanical system from which classical-like orbits can be recovered from unravellings of the master equation. In order to generated such trajectories in the phase space of this oscillator in this paper we use a the quantum jumps unravelling together with a suitable application of the correspondence principle. We analyse the measured readout by considering the power spectra of photon counts produced by the quantum jumps. Here we show that localisation of the wave packet from the measurement of the oscillator by the photon detector produces a concomitant structure in the power spectra of the measured output. Furthermore, we demonstrate that this spectral analysis can be used to distinguish between different modes of the underlying dynamics of the oscillator.Comment: 7 pages, 6 figure

    Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    Full text link
    The scientific objectives of the Lisa Technology Package (LTP) experiment, on board of the LISA Pathfinder mission, demand for an accurate calibration and validation of the data analysis tools in advance of the mission launch. The levels of confidence required on the mission outcomes can be reached only with an intense activity on synthetically generated data. A flexible procedure allowing the generation of cross-correlated stationary noise time series was set-up. Multi-channel time series with the desired cross correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure is the synthesis of a noise coloring multichannel filter through a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a Z-domain fit. The common problem of initial transients in noise time series is solved with a proper initialization of the filter recursive equations. The noise generator performances were tested in a two dimensional case study of the LTP dynamics along the two principal channels of the sensing interferometer.Comment: Accepted for publication in Physical Review D (http://prd.aps.org/

    Optical discrimination between spatial decoherence and thermalization of a massive object

    Full text link
    We propose an optical ring interferometer to observe environment-induced spatial decoherence of massive objects. The object is held in a harmonic trap and scatters light between degenerate modes of a ring cavity. The output signal of the interferometer permits to monitor the spatial width of the object's wave function. It shows oscillations that arise from coherences between energy eigenstates and that reveal the difference between pure spatial decoherence and that coinciding with energy transfer and heating. Our method is designed to work with a wide variety of masses, ranging from the atomic scale to nano-fabricated structures. We give a thorough discussion of its experimental feasibility.Comment: 2 figure
    • 

    corecore