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Abstract

A general, higher-order, conservative and bounded interpolation for the dynamic and

adaptive meshing of control-volume fields dual to continuous and discontinuous finite

element representations is presented. Existing techniques such as node-wise interpola-

tion are not conservative and do not readily generalise to discontinuous fields, whilst

conservative methods such as Grandy interpolation are often too diffusive. The new

method uses control-volume Galerkin projection to interpolate between control-volume

fields. Bounded solutions are ensured by using a post-interpolation diffusive correction.

Example applications of the method to interface capturing during advection and also

to the modelling of multiphase porous media flow are presented to demonstrate the

generality and robustness of the approach.

Keywords: Mesh adaptivity, mesh-to-mesh interpolation, Galerkin projection,

conservative, interface capturing, viscous fingering

1. Introduction

Dynamic, adaptive meshing is often used during numerical simulations of transient

fluid flows to improve accuracy [1, 2]. The mesh is refined in regions where properties

are changing rapidly in space and (usually) coarsened in regions where the properties

change more slowly in order to improve accuracy whilst minimising computational

effort. The mesh may change every time-step depending on the error metrics used to

control refinement and coarsening. This inevitably means that data must be mapped
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from one mesh to another using an interpolation algorithm [3]. The interpolation must

be done efficiently, to minimise computational overheads, and in such a way that the

field being re-meshed remains bounded. The method must also be conservative when

dealing with fields constrained by a conservation law (e.g. mass).

It is advantageous to model transient flow problems using a Control-Volume Finite

Element (CVFEM) formulation as this helps enforce mass conservation. Mesh adap-

tivity for control-volume fields may be used to better capture shocks and interfaces be-

tween fluids as well as material property boundaries in both inertial and porous media

flow [4, 5, 6, 7, 8]. In the latter example, discontinuous representations of control-

volume fields (that is to say when the dual 1 finite element representation is discon-

tinuous) may further help to capture abrupt changes in material properties (e.g. rock

permeability) [9, 10].

Whilst efficient techniques already exist in the literature for the interpolation of fi-

nite element fields [11, 12], as will be explicitly demonstrated in this paper, existing

methods of control-volume interpolation produce poor results when applied to discon-

tinuous fields. The interpolation introduces a large error into the solution which can

become irreparably distorted, highlighting the need for a new method without these

deficiencies.

The paper is structured as follows. In Section 1, existing methods of mesh to mesh

interpolation are reviewed outlining their strengths and weaknesses. Having motivated

the need for a new method of control-volume interpolation, Section 2 discusses the the-

ory underlying the new method, including the implementation of a bounded solution

correction. Section 3 provides three distinct applications of the method to interface

capturing problems, finishing with an application to viscous fingering in porous media

flow, in order to demonstrate the robustness of the method. The examples demonstrate

scenarios where other methods of control-volume interpolation can fail to give accept-

able solutions. Finally, some key conclusions drawn from the work are presented in

Section 4.

1.1. Node-Wise Interpolation

The simplest approach to interpolation, referred to here as node-wise interpolation

proceeds by setting the values of a field at the nodes on the new (target) mesh to be

equal to function values at those physical positions on the old (donor) mesh [13]. This

method of interpolation is sometimes known as collocation interpolation [13] or con-

sistent interpolation [11] in the literature. More precisely, if ψnew represents a field on

the new mesh, then the node values of this field ψnew
i

(pi) are given by expanding in

donor mesh basis functions and evaluating at the new node positions pi:

ψnew
i (pi) =

∑

j

Nold
j (pi)ψ

old
j (1)

1The control-volume and finite element meshes are dual to one another in the sense that they are related

by topological duality. This transformation maps dimension k objects into dimension d − k objects (d is the

total number of dimensions). In 2D, edges are therefore mapped into faces, faces into vertices and vertices

into faces. This dual relationship can be seen later in Fig. 3.
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where Nold
j

are basis functions (finite element or control-volume depending on the na-

ture of the field ψold) defined on the old mesh. An illustration of the node-wise inter-

polation procedure for a 1D (linear) finite element field is shown in Fig. 1.

Figure 1: Node-wise interpolation in 1D. The dotted lines represent element boundaries on the target/donor

mesh. The large nodes are donor mesh nodes, shown connected by solid lines representing a linear function

interpolating an element. The smaller nodes are the target mesh nodes, and function values there are given

by linearly interpolating function values on the donor mesh. The resulting node-wise interpolation onto the

target mesh is then represented by the dashed line.

Node-wise interpolation has several drawbacks. In particular, it is not conservative

in the sense that integrals (volume or surface) of the resultant field are not in general

the same as integrals of the original field when taken over the same region of physical

space. In addition, it has been demonstrated that node-wise interpolation does not in

general preserve the extrema of the interpolant [12, 14] and moreover is unsuitable for

application to discontinuous fields that are not point-wise defined without substantial

modification to the procedure [15, 16]. Finally, for higher-order discretisations, node-

wise interpolation does not guarantee bounded solutions.

1.2. Galerkin Projection/Interpolation

Galerkin interpolation is defined as the interpolation method that is optimal in the

L2 norm [11]. In addition to being conservative, the Galerkin method circumvents

many of the above issues that afflict node-wise interpolation and in particular is applica-

ble to both continuous and discontinuous interpolants [3, 17]. Consider a field ψold de-

fined on the old mesh, and ψ, some interpolation of this field that is defined on the new

mesh. The requirement of maximal accuracy in the L2 norm is that ∂
∂ψi ‖ψold −ψ‖L2

= 0

(where the ψi are the coefficients of ψ when expanded in target mesh basis functions)

or equivalently:
∫

∂

∂ψi
(ψold − ψ)2dV = 0. (2)

Expanding ψ =
∑

i Niψ
i then leads to the defining equation of a Galerkin projection:

∫

Nnew
i (ψnew − ψold)dV = 0
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=⇒
∑

j

∫

Nnew
i Nnew

j ψnew
j dV −

∑

j

∫

Nnew
i Nold

j ψold
j dV = 0 (3)

∀i ∈ {1, 2, ...,N} where N is the dimension of the function space spanned by the tar-

get mesh basis functions Ni and we have redefined the ψ satisfying Eq. 2, the Galerkin

projection definition, as ψ = ψnew. This equation serves as the starting point for the dis-

cussion of the control-volume Galerkin method in the next section. Conservativeness

of a standard Galerkin projection follows from Eq. 3 when Nnew
i
= 1 (for some i), that

is, when the constant function equal to unity is contained amongst the new mesh basis

functions.

The challenge in implementing Galerkin projection arises in accurately evaluating

the second term in Eq. 3. This term
∑

j

∫

Nnew
i

Nold
j
ψold

j
dV contains a mixed mass matrix

composed of multiplications of basis functions on the donor and target meshes. The

issue that arises in the evaluation of this integral is that the donor mesh basis functions

are only guaranteed to be (continuous) polynomials over each element of the donor

mesh. Over elements of the target mesh, the basis functions may be discontinuous or

piece-wise defined. If the integral of the product of the basis functions is evaluated at

Gauss quadrature points on the target mesh, the integral will not be exact, leading to a

loss of accuracy and conservativeness in the method.

The solution to this proceeds by constructing a geometry known as the supermesh

defined as the intersection of the donor and target meshes. On the elements of the su-

permesh, the donor mesh basis functions are, by construction, continuous polynomials

(since the supermesh is an intersection of donor and target meshes and the donor ba-

sis functions are continuous polynomials on the donor mesh), allowing high accuracy

evaluation of this integral [11].

In the case of interpolating a field that is defined on a general control-volume mesh,

direct construction of a supermesh is challenging. Heuristically this is because in the

(3D) finite element case, the supermesh is usually given by the intersection of two tetra-

hedral meshes which is itself tetrahedral, whilst in the control-volume case it involves

the intersection of more complex polyhedra, the classification of which is mathemati-

cally challenging. The approach must therefore be adapted in order to easily apply it

in the control-volume case.

1.3. Grandy Interpolation

The next method of interpolation we consider is Grandy interpolation [18]. It is a

conservative approach that is often effective but can be highly diffusive due to its low-

order nature. Grandy interpolation proceeds by mapping from donor to target mesh by

calculating the volume of intersection of overlapping polyhedra on the donor and target

meshes. The method assumes the interpolant to be constant across a donor element and

it is this feature that accounts for its diffusive nature. The calculation of the volume of

intersection of overlapping polyhedra in this case is an example of the construction

that must be done in order to build a control-volume supermesh. The Grandy method

may therefore be thought of as an example of performing Galerkin projection to a

control-volume field ψold in Eq. 3 but where the donor field is constant across donor
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elements. Since the method can be regarded as a special case of a Galerkin projection

it is conservative.

2. Control-Volume Galerkin Interpolation

In this section, the new control-volume interpolation method proposed in this paper

is explained in detail. Section 2.1 presents the method as a three step procedure that

begins by projecting the control-volume field onto a finite element representation on

the donor mesh. The resulting finite element field is then projected to a finite element

field on the target mesh by assembling a supermesh. Finally, this field is transformed

back into a control-volume representation on the target mesh. Having described the

interpolation method, Section 2.2 describes how one can obtain a bounded solution

after the interpolation is complete.

2.1. Three Projections

Fields defined on control-volume meshes may be interpolated using a three step

procedure that is now discussed in detail.

2.1.1. Step One - Projection to a finite element representation on the old mesh

First the control-volume (CV) field on the old mesh is mapped via Galerkin projec-

tion onto a finite element (FEM) representation within an element which may be either

a continuous (CG) or discontinuous (DG) Galerkin representation:

∫

Mold
CVFEM i

(ψold
FEM − ψold

CV )dV = 0, (4)

where the function Mold
CVFEM i

is a test function obtained from the restriction of the finite

element shape functions to control-volume i. More precisely, MCVFEM i = NFEM iMCV i

(no sum over i) where NFEM j are finite element shape functions and MCV j are control-

volume shape functions. The resulting test function has support on control-volume i

and may be continuous or discontinuous between elements. Note that the field after

this projection is still defined on the old mesh. Expanding using finite element and

control-volume basis functions, ψold
FEM

=
∑

j Nold
FEM j

ψold
FEM j

, and ψold
CV
=
∑

j Mold
CV j

ψold
CV j

,

Eq. 4 can be recast as:

∫

∑

j

Mold
CVFEM i

Nold
FEM jψ

old
FEM jdV =

∫

∑

j

Mold
CVFEM i

Mold
CV j

ψold
CV j

dV. (5)

Eq. 5 may be regarded as a matrix equation (MN)oldψold

FEM
= (MM)oldψold

CV
, that can

be solved for the vector ψold

FEM
= {ψold

FEM j
} where in component form the matrices

are defined as (MN)old
i j
=
∫

Mold
CVFEM i

Nold
FEM j

dV and (MM)old
i j
=
∫

Mold
CVFEM i

Mold
CV j

dV .

Note that MNold and MMold are square matrices since the number of test functions

Mold
CVFEM i

,∀i ∈ {1, 2, ...,N} is equal to the number of finite element basis functions

Nold
FEM j

,∀ j ∈ {1, 2, ...,N} thus resulting in a solvable system of equations. A graphical

representation of the projection defined by Eq. 4 is shown in 1D in Fig. 2 and in 2D in

Fig. 3.
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Figure 2: Illustration of the projection defined by Eq. 4 in 1D. The solid horizontal and vertical lines represent

a function defined control-volume wise (constant inside each control-volume) and the dotted lines denote

finite element boundaries. The solid diagonal line shows the result of mapping the control-volume function

to a continuous Galerkin finite element representation within an element. The dashed lines show the result

of mapping the control-volume field to a discontinuous Galerkin finite element representation within each

element.

(a) (b) (c)

Figure 3: Illustration of the projection defined by Eq. 4 in 2D. (a) A 2D control-volume function is shown

with both element and control-volume meshes overlaid. It is a linear combination of control-volume test

functions that are constant across a given control-volume and zero on all others. (b) A projection of the

control-volume function in (a) to a discontinuous finite element representation. The finite element solution

varies linearly across an element and is discontinuous across element boundaries. (c) Projection of (a) to a

continuous finite element representation.

2.1.2. Step Two - Projection from old to new mesh by building a supermesh

The resulting FEM representation ψold
FEM

interpolating the control-volume field ψold
CV

can then be mapped onto the new mesh via a strictly FEM Galerkin projection, greatly
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simplifying the implementation of this mapping:

∫

Nnew
FEM i(ψ

new
FEM − ψold

FEM )dV = 0. (6)

Solving Eq. 6 for ψnew
FEM

requires computation of the mixed finite element mass matrix

(MM)new−old
i j =

∫

Nnew
FEM i

Nold
FEM j

dV which is a complex problem but can be tackled

by constructing a supermesh from the intersection of the old and new meshes. This

procedure was outlined in Section 2.1, but the reader is referred to [12] for a detailed

account of global supermeshing, and [11] for a discussion of local supermeshing and

also to [19] for a more detailed account of supermeshing as a whole. The mapping is

greatly simplified as it now only requires calculation of intersections of finite element

meshes as opposed to control-volume meshes or a mixture of the two.

2.1.3. Step Three - Projection back to CV representation on the new mesh

Having done this, the resulting FEM representation, ψnew
FEM

, on the new mesh can

then finally be projected back to a CV representation, ψnew
CV

, on the new mesh:

∫

Mnew
CV i

(ψnew
CV − ψnew

FEM )dV = 0. (7)

This concludes the three step interpolation procedure. Note that there are advantages

to using a DG FEM representation within the mapping rather than a continuous FEM

representation as it is more accurate and does not propagate Gibbs oscillations beyond

an element as there is no communication between elements. Note also that the complete

mapping (Eq. 4 - Eq. 7) is conservative and does not change the interpolant (that is

ψnew
CV
= ψold

CV
) if the old and the new mesh are the same. This statement follows by

considering (Eq. 4 - Eq. 7) when the new mesh and old mesh are the same:

∫

Mnew
CV i

ψnew
CV dV =

∫

Mnew
CV i

ψnew
DG dV =

∫

Mold
CV i

ψold
DGdV (8)

=
∑

k∈CVDG ⊂CVi

∫

Mold
CVDGk

ψold
DGdV =

∑

k∈CVDG ⊂CVi

∫

Mold
CVDGk

ψold
CV dV =

∫

Mold
CV i

ψold
CV dV

(9)

and thus
∫

Mnew
CV i

ψnew
CV

dV =
∫

Mold
CV i

ψold
CV

dV or ψnew
CV i
= ψold

CV i
. In Eq. 9, k is an element

of the set of CVDG’s (discontinuous sub-control-volumes) that are contained inside

control-volume CVi.

2.2. Implementation of Bounded Solution Corrections

Despite having many advantages over other interpolation methods, interpolation of

a control volume field by way of Galerkin projection onto a finite element basis will

not necessarily result in a solution that is bounded. This issue also arises in node-wise

interpolation when the order of the finite element basis functions is quadratic or higher

and so is not unique to the Galerkin method. We now outline a procedure whereby

given a solution to the above interpolation, ψnew
CV

, one can obtain a new solution that is

bounded.
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In order to measure the deviation from boundedness, begin by defining a field

ψnew
CV devk

control-volume wise such that at each control-volume k:

ψnew
CV devk

=



























ψnew
CV k
− ψnew

CV maxk
, if ψnew

CV k
> ψnew

CV maxk
;

ψnew
CV k
− ψnew

CV mink
, if ψnew

CV k
< ψnew

CV mink
;

0, otherwise,

(10)

where boundedness is achieved when ψnew
CV devk

= 0,∀k ∈ {1, 2, ...,Mnew
CV}. For a control-

volume k, if ψnew
CV k

lies strictly within the solution bounds (ψnew
CV mink

, ψnew
CV maxk

), the

control-volume does not need mass adjustment in order to obtain a bounded solution.

We describe such a control-volume as having ‘absorptive capacity’.

The strategy to obtain a bounded solution is then to introduce diffusion to the de-

viation field in order to spread non-zero deviation into neighbouring control-volumes.

Iterating this procedure should then lead to a state where all control-volumes are at

absorptive capacity. This process must be done in such a way that conservativeness is

maintained. This diffusion algorithm in now described in greater detail.

At each iteration, a new vectorψnew

CV alt
= (ψnew

CV alt1
, ψnew

CV alt2
, ..., ψnew

CV altMCV
)T is solved

for that satisfies:

MLψ
new

CV alt
=MRψ

new

CV dev
. (11)

This operation is trivial since by construction, the mass matrix ML is diagonal (see

below). Since the distributed mass matrix MR is not diagonally dominant (see below)

a relaxation coefficient w = 0.5 is introduced such that:

ψnew

CV alt
← wψnew

CV alt
+ (1 − w)ψnew

CV dev
. (12)

The interpolant vector ψnew

CV
is then modified using:

ψnew

CV
← ψnew

CV
− ψnew

CV dev
+ ψnew

CV alt
. (13)

Note that the above operations have no effect on the integral of ψnew
CV

and hence conser-

vativeness. The mass matrices in Eq. 11 are defined as:

MRi j =















mCV i

mS UR j
mCV j, if j ∈ neig{i};

0, otherwise,
(14)

and

MLi j =















mCV i, if i = j;

0, otherwise,
(15)

where mCV i is the volume of control-volume i and mS URi contains the sum of the vol-

umes of the surrounding control-volumes:

mS URi =
∑

k ∈ neig{i}
mCV k (16)

and neig{i} labels the control-volumes that share a face with control-volume i, including

itself.
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One concern with the iterative scheme we have presented above is that it substan-

tially adjusts control volumes that are already bounded. This problem can be less-

ened by the following modification. When iterating over control-volumes, for a given

control-volume k, we identify the neighbouring control-volumes to k with the max-

imum positive and the minimum negative defect adjustment needed and mass is ex-

changed exclusively between these until no further mass adjustment can be made for k.

One then proceeds to control-volume k + 1. More precisely:

1) Form ψCV
new
dev i

and ψCV
new
dev j

from Eq. 10.

2) For control-volumes i and j set:

ψnew
alt i
← ψnew

dev i
, ψnew

alt j
← ψnew

dev j
. (17)

3) If ψnew
alt i

ψnew
alt j

< 0

then



















ψnew
alt i
←

(ψnew
alt i

mCV i+ψ
new
alt j

mCV j)

mCV i
and ψnew

alt j
← 0, if ψnew

alt i
mCV i > ψ

new
alt j

mCV j;

ψnew
alt j
←

(ψnew
alt i

mCV i+ψ
new
alt j

mCV j)

mCV j
and ψnew

alt i
← 0, otherwise,

(18)

and ψnew
CV i
← ψnew

CV i
− ψnew

CV devi
+ ψnew

CV alt i
, (19)

and ψnew
CV j
← ψnew

CV j
− ψnew

CV dev j
+ ψnew

CV alt j
. (20)

The mass adjustment associated with step 3 above takes the control-volume with the

minimal needed mass adjustment, that is control-volume j if ψnew
alt i

mCV i > ψ
new
alt j

mCV j

and control-volume i otherwise, and adds its mass deficiency (negative or positive

mass) to the other control-volume. The effect of this is to eliminate the donor control-

volume’s mass deficiency and reduce the mass deficiency of the receiving control-

volume so that either ψnew
alt i
← 0 or ψnew

alt j
← 0.

In practice, the algorithm above (Eq. 17 - Eq. 20) may not be able to eliminate all

mass deficiencies and it is therefore used together with the mass distribution approach

(Eq. 11 - Eq. 13). By iteratively solving Eq. 17 - Eq. 20 until no further adjustment can

be made and then solving Eq. 11 - Eq. 13, and repeating this two-stage process until

the maximum control-volume field adjustment is small (e.g. 10−6 in the examples in

this paper), one can obtain a bounded solution after interpolation.

3. Applications

3.1. Interpolation During Mesh Refinement

Having discussed the theoretical background underlying the proposed new method

of control-volume interpolation, a series of applications of the method are now consid-

ered.

The first three examples are to advection problems. We consider the dynamics of a

scalar field ψ that is passively transported with the (prescribed) bulk velocity u of the
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underlying fluid according to the advection equation:

∂ψ

∂t
+ ∇ · (ψu) = 0. (21)

The mesh adapts to the curvature of the scalar field ψ which is represented control-

volume wise and the behaviour of different methods of interpolation used to map this

scalar field between meshes are compared. The scalar field ψ is defined on a control-

volume mesh that is dual to an n’th order finite element pressure mesh that may be

discontinuous or continuous. The pressure representation will be referred to using the

notation PnDG in the former case and PnCG in the latter case. The value of n used, as

well as the mesh continuity will be stated in each example in turn. The finite element

pressure representation is used to calculate the higher-order fluxes for advection as

detailed in [4, 6].

As a first example, a case where the bulk fluid velocity u = 0 is examined. Consider

a 2D scalar field ψ(x, y) that is non-zero on a square region and zero elsewhere as

shown in Fig. 4. Despite the lack of any fluid motion, the mesh is made to change

over the course of the simulation by decreasing the minimum element edge-length for

mesh adaptivity with time (see Table 1 for its functional form). The mesh therefore

gradually refines along the square interfaces of the problem and the scalar field must

be interpolated at every time-step. With no change in minimum element edge-length

there would of course be essentially no interpolation to do in this example. Note also

that this simulation involves no advective transport and hence constitutes a pure test of

the interpolation method itself and in particular of the conservativeness of the method.

The results after adapting the mesh 100 times using node-wise interpolation and

the Grandy method are compared with those obtained by the control-volume Galerkin

method presented in this paper. The numerical parameters used in the simulation are

specified in Table 1. The resolution specifies the approximate number of elements in

the initial mesh as well as in the final mesh. Note that here and in all examples, the final

resolutions differ for the three interpolation methods and a single representative value

is quoted. The minimum/maximum element edge-lengths bound the element sizes that

enter the metric tensor in adaptivity. They control the smallest and largest element sizes

permitted in a mesh after an adapt and hence effectively control the mesh resolution

for a fixed interpolation error bound and gradation settings (the scaling ratio between

adjacent elements). A concise overview of pertinent features of mesh adaptivity can

be found in [19]. The minimum/maximum edge-lengths are fixed to be the same for

the three interpolation methods. As discussed previously, the minimum element edge-

length decreases as a function of time to a minimum value of 0.001.

Using the notation introduced at the start of this section, a P1DG pressure discreti-

sation was used in this example. A diffusive correction as outlined in Section 2.2 was

also applied after interpolation to keep the solution fields within physical bounds. The

same correction is applied to both node-wise and control-volume Galerkin methods,

but is not required in the Grandy case because this is automatically bounded.

The initial state is shown in Fig. 4 and the results of the three interpolation methods

after 100 mesh adapts are shown in Fig. 5. It is clear that node-wise interpolation no

longer sharply captures the interfaces in the problem and inhomogeneities have begun

to appear along the boundary of the square. This is to be contrasted with Grandy and
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Size Initial/Final Resolution Min Edge-length Max Edge-length

2.0 × 1.0 5400/44400 0.01 - (0.009)t 0.1

Table 1: Parameters used in the static scalar simulation described in the main text. The variable t is physical

time. All measures of distance in this paper may be regarded as dimensionless (hence the absence of units in

the specification of domain size and minimum/maximum edge-length).

(a) (b)

Figure 4: (a) Initial scalar field distribution. The field is non-zero in a square region of length 0.7 and

positioned at the centre of the computational domain. (b) Initial mesh. The mesh is refined along the edges

of the square in order to capture the interface.

Galerkin interpolation which are able to capture the boundaries very closely. Qualita-

tively, the Grandy and Galerkin results are similar in this example.

Fig. 6a shows the integral of the scalar field over the domain for each interpolation

method, and Fig. 6b shows the error in the three interpolation methods. The integral

fluctuates in the node-wise case every time the mesh adapts and conservativeness is lost.

The fluctuations in the control-volume Galerkin and Grandy cases on the other hand are

negligible - of the order machine precision, implying that the methods are conservative.

In all cases, the L2 error decreases with time as the mesh resolution increases (due to the

decreasing minimum element size) as expected but the error is smallest in the control-

volume Galerkin case. The error is reduced compared to Grandy interpolation due to

a reduction in inhomogeneities along the interface boundary. Note as mentioned in

Section 1, node-wise interpolation can be problematic for discontinuous interpolants.

Whilst not so pronounced in this example, it will become so in what follows.

3.2. Higher-Order Convergence

As discussed in Section 2.1, the control-volume Galerkin method begins by project-

ing a field defined control-volume wise onto a finite element representation. In contrast

to Grandy interpolation, this yields (in general) a higher-order polynomial representa-

tion as opposed to a flat function. It is expected that this higher-order representation

in finite element space should lead to higher-order numerical convergence and this is

indeed the case as is now demonstrated by example. We also further motivate this

higher-order convergence in Appendix A

In order to study the convergence of the interpolation methods, we consider a se-

quence of simulations beginning on a high resolution fixed mesh and mapping once

(through mesh adaptivity) to a new mesh with different minimum edge-length (and

hence resolution). The initial fixed mesh resolution is kept the same whilst the min-

imum element edge-length on the target mesh is varied over the range specified in
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Scalar field and initial mesh after 100 mesh adapts computed using node-wise interpolation (a,b)

Grandy interpolation (c,d) and and control-volume Galerkin interpolation (e,f).

Table 2. The three interpolation methods are used in turn to map the scalar fields from

the old mesh onto the new mesh and the L2 error in the interpolation results is plotted

as a function of minimum element edge-length on the target mesh. The same P1DG

pressure discretisation as in the previous example is adopted.

In this example, the scalar field ψ(x, y) that is interpolated from the old mesh to the
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(a) (b)

Figure 6: (a) Integrated scalar field
∫

ψ(t)dxdy plotted against the number of mesh adapts as computed

via control-volume Galerkin projection (squares), node-wise interpolation (circles) and Grandy interpolation

(triangles). (b) L2 error in the static scalar field plotted against the number of mesh adapts for control-volume

Galerkin projection (squares), node-wise interpolation (circles) and Grandy interpolation (triangles).

new mesh is taken to be a 2D Gaussian function of the form.

ψ(x, y) = e−[(x−0.5)2+(y−0.5)2]/0.02 (22)

The initial scalar distribution together with an example target mesh are shown in

Fig. 7 and the numerical parameters used in the simulation are shown in Table 2. The

target resolution specifies the approximate number of elements in the target mesh and

the minimum/maximum element edge-lengths bound the element sizes that enter the

metric tensor in adaptivity. The initial mesh that the scalar field is initially defined on

before being mapped onto the target mesh has 20000 elements (Fig. 7b). This mesh is

by construction very fine so as to represent the Gaussian initial state with a very small

error. A sequence of 11 simulations are performed (for each interpolation method in

turn) varying the minimum element edge-length between 0.06 and 0.25.

Size Target Mesh Resolution Min Edge-length Max Edge-length

1.0 × 1.0 40-500 0.06-0.25 1.0

Table 2: Parameters used in the Gaussian scalar simulation discussed in the main text.

A log-log plot of discrete L2 error against minimum element edge-length for the

three interpolation methods is shown in Fig. 8. It is clear that node-wise interpo-

lation and Grandy interpolation exhibit slower than linear convergence, whilst the

control-volume Galerkin method shows close to second order convergence and is hence

a higher-order method. The order m of the trend line through the control-volume

Galerkin data is m ∼ 1.85, whilst m ∼ 0.77 for node-wise interpolation and m ∼ 0.96

for Grandy interpolation.

3.3. Advection of a Square Scalar Field

The next step in complexity is to introduce a non-zero bulk velocity into the inter-

polation problem. We consider again initial data where the scalar is zero everywhere

13



(a) (b)

(c) (d)

Figure 7: (a) Initial Gaussian scalar field distribution on a fixed mesh before interpolation. (b) Initial struc-

tured mesh before interpolation. (c) Gaussian scalar field after interpolation onto a coarser target mesh. In

the example shown here the interpolation was done by the control-volume Galerkin method. (d) Target mesh

with prescribed minimum element edge-length (in this case 0.06).

except on a (rotated) square. The system is initialised with a positive velocity in the

x direction and the mesh is adapted to the curvature of the scalar. Since there is now

advective transport of the scalar, the mesh changes with time automatically and there is

no need to vary the minimum element edge-length to engineer this. Once again the re-

sults of interpolating via node-wise and Grandy interpolation are compared with those

obtained by the control-volume Galerkin method presented in this paper.

The numerical parameters used in the simulation are specified in Table 3. The CFL

number reported here corresponds to the largest value reached after approximately 140

adapts. The velocity is that of the initial square, and the size refers to the whole domain

dimensions. Note the total domain length is purposely chosen to be much larger than

the total distance travelled by the square during the simulation to minimise the influ-
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Figure 8: Log-log plot of discrete L2 error against minimum element edge-length for node-wise (circles),

Grandy (triangles) and control-volume Galerkin interpolation (squares). The gradient of the straight line in

this plot gives the order of convergence for a given interpolation method. Dashed lines indicating linear and

quadratic convergence are also shown.

ence of errors due to material advection through the outlet boundary on conservation

integrals. Thus, the behaviour of the interpolation methods can be studied in a way

that is decoupled as much as possible from the properties of the advection method.

The resolution specifies the approximate number of elements in the initial mesh (this

remains approximately constant throughout the simulation in this case for all inter-

polation methods except in the node-wise case, where the solution field is gradually

destroyed) and the minimum/maximum edgelengths bound the element sizes that are

permitted during adaptivity. Note that now the minimum element edge-length is fixed

unlike in the previous example so there is no ‘global’ mesh refinement. The same

P1DG pressure element as in the previous example is adopted together with the com-

pressive advection scheme outlined at the start of Section 3.

CFL Number Velocity Size Resolution Min/Max Edgelength

0.25 1.0 12.0 × 1.0 5000 0.01/0.05

Table 3: Parameters used in the square advection simulation described in the main text.

The initial state is shown in Fig. 9 and the results of the three interpolation methods

after approximately 140 mesh adapts are shown in Fig. 10. Fig. 11a shows the integral

of the scalar field over the domain for all three methods and Fig. 11b shows the L2

error in the solutions. With advection included, there there are now major qualitative
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(a)

(b)

(c)

(d)

Figure 9: (a) Initial scalar field which is non-zero in a square region of length 0.7, centred at (0.05 +

0.7/
√

2, 0.5). (b) Initial mesh refined in order to sharply capture the inclined interfaces. (c) Solution field

after approximately 140 mesh adapts corresponding to when the square has travelled half the length of the

domain in this image computed via control-volume Galerkin interpolation. (d) Computational mesh corre-

sponding to (c).

differences in the results of the three interpolation methods at late times. In the case of

node-wise interpolation, the solution field has been severely distorted. In the Grandy

case, the initial state is well preserved in the interior of the square but the interfaces

have become spread out. This behaviour can be attributed to the diffusivity associated

with Grandy interpolation and can be problematic in certain classes of problems as will

be illustrated in the final example discussed in this paper.

Of all the methods, control-volume Galerkin interpolation most closely retains the

structure of the initial square, keeping both the uniform field values internally and the

sharp interface boundaries. There is some overall distortion to the square-tip geometry

common to all three methods but this can be attributed to numerical errors in advection

and not the interpolation.

Fig. 11a verifies conservation in the Galerkin and Grandy cases and lack thereof in

the case of node-wise interpolation. This example demonstrates that conservativeness

is maintained even in scenarios with advection. Finally, Fig. 11b demonstrates that as

expected, the error in the case of node-wise interpolation increases rapidly compared

to the other two methods. The error is again smallest in the case of the control-volume

Galerkin method, remaining approximately constant over the course of the simulation.

It is also instructive to compare the computational costs of the three interpolation

methods in this example. The inclusion of advection, makes the problem non-trivial

and the costs are representative of the general behaviour observed in other examples.

The control-volume Galerkin method runs approximately 12% slower than the Grandy

method, but correspondingly leads to an approximate 45% reduction in the L2 error at

the end of the simulation. Node-wise interpolation is in general very similar in cost to

Grandy interpolation (only 1% − 5% faster than the Grandy method) except in situa-
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Interpolated scalar field and mesh computed after approximately 140 mesh adapts by node-wise

interpolation (a, b), Grandy interpolation (c, d) and control-volume Galerkin projection (e, f). The plots are

zoomed in on the region of interest compared to Fig. 9.

tions such as this example where the interpolant is discontinuous and the solution field

is damaged by the interpolation. In these cases, the node-wise method is in fact much

more costly (running approximately 54% slower than the Grandy method) as solving

the equation system becomes progressively harder with time, ultimately leading to a

very large error in the final state. These simulation times were obtained running in

serial with a 2.6 GHz dual Intel Xeon processor and 128GB of RAM. In summary, the

control-volume Galerkin interpolation method is able to significantly reduce the inter-
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(a) (b)

Figure 11: (a) Integrated scalar field
∫

ψ(x, y)dxdy against the number of mesh adapts as computed via

control-volume Galerkin projection (squares) node-wise interpolation (circles) and Grandy interpolation (tri-

angles) for the a square advection problem described in the main text. (b) L2 error in the interpolation of the

scalar field ψ(x, y) plotted as a function of the number of mesh adapts for control-volume Galerkin projection

(squares), node-wise interpolation (circles) and Grandy interpolation (triangles).

polation error during mesh adaptivity compared to node-wise and Grandy interpolation

whilst incurring little extra computational cost.

3.4. Advection of a Circular Scalar Field

We now consider interpolation for a final pure advection problem, this time with a

continuous interpolant. In this case, the 2D scalar field ψ(x, y) is initialised to unity on

a disc which is then set rotating in the anticlockwise direction for a quarter of a turn

after which the sign of the velocity is changed and the disc is rotated back to its initial

state. Since the flow is reversible, the final scalar field distribution should be identical

to the initial state. We compare how closely node-wise and control-volume Galerkin

interpolation are able to capture this reversibility by analysing the scalar fields in the

final state.

The initial state of the system is shown in Fig. 12 and the numerical settings used

in the simulation are shown in Table 4. The Courant number reported here corresponds

to the largest value reached. The initial resolution refers to the approximate number

of elements in the initial/final mesh whilst the inter(mediate) resolution specifies the

number of elements after a quarter turn before the velocity is reversed. The mini-

mum/maximum edgelength control the element sizes in adaptivity. A P2CG pressure

element was used in the simulation.

CFL Number Velocity Size Initial/Inter Resolution Min/Max Edgelength

0.3 u =
(

sin(x) cos(y)

− cos(x) sin(y)

)

π × π 2000/4000 π
200
/ π

2

Table 4: Parameters used in the circular advection simulation described in the main text.

We show the results after a quarter turn in Fig. 13 and after returning to the initial

state in Fig. 14. After this time 400 mesh adapts have taken place. In this example,
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(a) (b)

Figure 12: Initial circular scalar field distribution (a) and initial mesh (b). The disk has radius r = π
5

and is

centered at
(

π
2
, π+1

5

)

.

there is again a qualitative difference between the results of the two interpolation meth-

ods. In particular, it is apparent from Fig. 14 that the control-volume Galerkin results

more closely capture the original scalar field distribution. In particular, the node-wise

interpolation results have developed oscillatory modes along the boundary of the disc

that are not present in the initial state.

3.5. Viscous Instabilities in Two Phase Immiscible Displacement in a Porous Medium

As a final and more complex application of the new interpolation method presented

in this paper, we consider simulation of an immiscible two-phase displacement in a

porous medium. This process is of great importance occurring in the water-flooding of

oil reservoirs [20]. In such scenarios where a more viscous fluid is displaced by a less

viscous fluid, it can be shown that the interface between the two phases is unstable to

infinitesimal transverse perturbations. This instability may be viewed as analogous to

the Saffman-Taylor instability observed in Hele-Shaw cell experiments but now in the

context of two-phase porous media flow [21]. These perturbations can grow, becoming

macroscopic viscous fingers. Simulation of viscous fingering is known to be challeng-

ing requiring a combination of higher-order numerical methods and very fine resolution

to minimise the influence of numerical diffusion [22, 23, 24]. Mesh adaptivity is ad-

vantageous in such situations, allowing very fine mesh resolution to be maintained in

the vicinity of the fingers as they grow with coarser resolution elsewhere [25].

When modelling unstable fluid phenomena with mesh adaptivity it is important

that the interpolation method adopted is conservative since any fluctuations in field

values introduced by interpolation can lead to artificial, unphysical perturbations that

may grow and affect the solution field. In this example, mesh adaptivity is used to

simulate viscous fingering at early-times, using a discontinuous representation of water

saturation, and contrasting the results of the new interpolation method presented in

the paper with those of Grandy interpolation. A discontinuous representation is used
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(a) (b)

(c) (d)

Figure 13: Scalar field and mesh as computed after a quarter of a turn (θ = π/4) corresponding to 200

adapts by node-wise interpolation (a,b) and control-volume Galerkin interpolation (c, d) at the point where

the instantaneous velocity of the system is reversed.

to maximise the effective number of control-volumes to capture the instability. Note

we do not use node-wise interpolation since, as shown by the previous examples, it

is unreliable in applications to discontinuous fields. This example also serves as a

demonstration of when the Grandy method, which has hitherto performed well, can

yield poor results due to its highly diffusive nature.

The equations governing two phase flow in a porous medium are the generalised

Darcy law for the volumetric fluid flux qα:

qα = −
Kkr,α

µα
∇pα (α = o,w), (23)
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(a) (b)

(c) (d)

Figure 14: Scalar field and mesh on returning to the initial orientation θ = 0 after 400 adapts as computed by

node-wise interpolation (a, b) and control-volume Galerkin interpolation (c, d). The initial state is overlaid

on these images in white to compare how closely it is retained by the interpolation methods.

together with the continuity equation:

φ
∂S α

∂t
+ ∇ · qα = 0 (α = o,w), (24)

and finally the constraint that the volume fractions occupied by each of the two fluids

sum to unity [26]:

S o + S w = 1. (25)

In the above, K is the permeability tensor, α indexes the two fluids, kr,α is the relative

permeability of each fluid, pα the pressure, S α the phase volume fraction (saturation)

and φ the porosity of the porous medium. Note that capillary pressure is neglected in

the discussion here.
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In the case of 1D symmetric solutions of the form S (x, y) = S (x), Eq. 23 and Eq. 24

reduce to the Buckley-Leverett equation [20]:

φ
∂S w

∂t
+
∂

∂x













kr,w(S w)

kr,w (S w) + 1
M

kr,o (S w)
qw













= 0 (26)

where M is the viscosity ratio of the two fluids and qw is the fluid inflow velocity.

Eq. 26 admits shock solutions composed of an advancing compression wave together

with a rarefaction. In order to simulate viscous fingering we are interested in the

behaviour of pressure and saturation perturbations about solutions to the Buckley-

Leverett equation Eq. 26. Solution of the linearised equations can be shown to re-

duce to an eigenvalue problem that relates the growth rate of perturbations to their

frequency. Further theoretical discussions of viscous fingering can be found in for

example [22, 23, 26, 27, 28, 29].

We consider simulation of an immiscible displacement using mesh adaptivity to

accurately resolve the shock front and the growth of viscous fingers. The simulation

was carried out using a higher-order CVFE simulator developed at Imperial College

detailed in [7, 10]. The simulator solves a modified form of the equation system above

(Eq. 23 - Eq. 25) where a new velocity (uα = qα/S α), distinct from the Darcy veloc-

ity, is solved for. Velocity is eliminated from the equation system and the resulting

pressure-saturation equation is then solved. The simulations were run with a P2DG-

P1DG element (second order discontinuous finite element representation for velocity,

first order discontinuous finite element representation for pressure). The numerical

solution is interpolated between meshes after each adapt.

As can be seen from Eq. 26, closure of the system of equations requires specifica-

tion of the functional form of the relative permeabilities. A Corey-type correlation [30]

given by [24] is used:

kr,w = 0.06S 2, kr,o = 0.74(1 − S ), S =
S w − S wr

1 − S wr − S or

(27)

where S wr and S or are the immobile fractions of the two fluids (the fractions of the

two fluids that cannot be displaced). The remaining multiphase and numerical param-

eters used in the simulation are specified below in Table 5 and Table 6 respectively.

The displacing phase (water) is injected from the left with the specified velocity. The

resolution specifies the approximate number of elements in the adaptive mesh. The

maximum value 10500 is the number of elements after the first adapt, whilst the value

7000 corresponds to the approximate number of elements at the end of the simulation.

The number of elements in the initial mesh is approximately 20000 whilst the whole

domain fixed mesh we compare the adaptive results against has approximately 40000

elements.

Viscous fingering can be triggered numerically by introducing a perturbation to the

saturation, pressure or permeability fields. It is triggered here by a saturation perturba-

tion across the inlet boundary at the first time-step (shown in Fig. 15c). The form of the

perturbation used is the same as that considered in [24]. This perturbation is allowed

to grow on a fixed mesh until the fingers reach just under half-way across the domain

at which point the mesh adapts to the water saturation field. The mesh is initially kept
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Viscosity Ratio Permeability Porosity Irred. Sat. Phase 1 Irred. Sat. Phase 2

µ = 303 K = 3.7 × 10−13 φ = 0.205 S wr = 0.3 S or = 0.4

Table 5: Multiphase flow parameters used in the immiscible displacement simulation described in the main

text. The last two columns specify the irreducible saturations S wr , S or of the two phases used in the relative

permeability functions.

CFL Number Velocity (m/s) Size Adaptive Resolution Min/Max Edgelength

0.125 2.5 × 10−5 0.05 × 0.05 7000/10500 0.000375/0.005

Table 6: Simulation parameters used in the immiscible displacement simulation described in the main text.

fixed so as to allow the fingering pattern time to form. Adapting too early before the

fingering pattern has fully formed could damage the solution field. The saturation pro-

file and mesh immediately before the first adapt are shown in Fig. 15 whilst the results

after the fingers have nearly reached the outlet (after 680 mesh adapts) are shown in

Fig. 16 for both methods of interpolation together with results on a fixed mesh (with

edge-length equal to the minimum allowed in the adaptive simulations) at the same

point in time.

It is clear from these results that the control-volume Galerkin method is able to

preserve the structure of the viscous fingers after many adapts whilst in contrast the

diffusivity of the Grandy method smears the fingering pattern, capturing only the large-

scale structure of the front and diffusing away any small scale details. This behaviour

can be attributed to the lower order nature of Grandy interpolation - smaller variations

in field values are eroded during the interpolation process which leads to a runaway

adaptive coarsening of the mesh.

Further evidence to support the conclusion that the control-volume Galerkin method

is able to capture viscous fingering with comparable accuracy to results obtained on a

fixed mesh can be seen in saturation cross sections through the fingering pattern for the

three simulations. From Fig. 17a it is clear that mesh adaptivity with control-volume

Galerkin interpolation produces very similar average saturations to those found in the

fixed mesh simulations. In contrast, Grandy interpolation shows deviations from the

fixed mesh in the region where the viscous fingers are forming. A water saturation cross

section as a function of vertical spatial coordinate along a transverse slice (x = 0.04)

that intersects the fingering pattern is shown in Fig. 17b. The control-volume Galerkin

results more closely match the pattern of maxima and minima in saturation seen on the

fixed mesh when compared to the Grandy method which tends to average out nearby

extrema. Similarly, the saturation cross section along a longitudinal slice (y = 0.022) is

shown in Fig. 17c. The control-volume Galerkin results again more closely match the

fixed mesh results. The growth rate in particular appears to be under-predicted in the

Grandy case with the fingers being too short. Finally, a plot of the water flux across the

outlet boundary as a function of dimensionless simulation time is shown in Fig. 17d.

The water flux is initially zero until the viscous fingers reach the outlet boundary and

cause water ‘breakthrough’. The control-volume Galerkin interpolation results show a

very similar breakthrough time to that seen on the fixed mesh whilst the Grandy results

show a later breakthrough time due to the diffused fingering pattern.
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(a) (b)

(c)

Figure 15: (a) Water saturation profile immediately before adapting the mesh for the immiscible two-phase

displacement simulation described in the main text. Water is injected from the left boundary and displaces

the resident second phase (oil). (b) Initial mesh, by construction fine in the region where the viscous fingers

are growing and coarser elsewhere. (c) Saturation perturbation used on the initial time-step to trigger viscous

fingering.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Water saturation and computational mesh after 680 adapts as computed via Grandy interpolation

(a,b) and control-volume Galerkin interpolation (c,d). At this time, the initial viscous finger distribution has

grown substantially. The results of the same simulation performed on a fixed mesh are shown in (e,f) where

the fixed mesh edge-length is equal to the minimum value in the adaptive simulations.
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(a) (b)

(c) (d)

Figure 17: (a) Average water saturation as a function of the horizontal spatial coordinate. (b) Water saturation

cross section as a function of vertical spatial coordinate along a transverse slice (x = 0.04) that intersects the

fingering pattern. (c) Water saturation cross section as a function of horizontal spatial coordinate along a lon-

gitudinal slice (y = 0.022). (d) Water flux across the outlet (right) boundary as a function of (dimensionless)

simulation time.
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4. Conclusions

We have presented a general higher order, conservative and bounded method for

interpolating fields between control-volume meshes. This is achieved by first mapping

the control-volume field into a finite element representation on the donor mesh by

Galerkin projection, then interpolating onto the target mesh by constructing a finite

element supermesh from the intersection of the donor and target meshes and finally

projecting back to a control-volume representation on the target mesh. Boundedness

is achieved by using a simple diffusion algorithm on the resulting interpolated solution

on the target mesh.

A series of test cases have demonstrated that the method is superior to both node-

wise and Grandy interpolation for control-volume fields with a discontinuous dual fi-

nite element representation. Node-wise interpolation was shown to result in significant

distortion in the solution field when using a discontinuous (higher order) interpolant.

Grandy interpolation did not result in such distortion but was found to be much more

diffusive than the Galerkin projection method. For the test case investigating the sim-

ulation of immiscible viscous fingering in porous media this meant that the Grandy

interpolation smeared out the structure of the viscous fingers after a large number of

mesh adapts. Overall the Galerkin projection method has a lower error than both the

node-wise and Grandy interpolation methods, when compared with a fine fixed mesh,

and causes less numerical diffusion.

The error in the Galerkin projection method grows much more slowly than in both

the node-wise and Grandy interpolation so would be the method of choice for simula-

tions requiring frequent mesh adapts. It is slightly more CPU intensive that the Grandy

method (12% slower in our test case) but the L2 error is reduced at the end of the sim-

ulation (45% in this test case). The node-wise interpolation was even slower than the

Galerkin projection method for discontinuous interpolants because it distorts the solu-

tion field making the equation system harder to solve as the simulation progresses. For

lower order interpolants the performance of the node-wise interpolation was similar to

that of the Grandy interpolation.

The proposed control-volume Galerkin projection method is currently the only con-

servative, higher order interpolation technique available for control-volume fields. The

method was applied to a CVFE model in this paper but it should be possible to gener-

alise this to other interpolations of control-volume fields.

Appendix A. Higher-Order Convergence of the CV Interpolation Method

In this appendix, we provide arguments to support the claim that the control-volume

interpolation introduced in this paper exhibits higher-order convergence. As discussed

in Section 2.1, the method is composed of three steps: A map from a control-volume

to finite element representation on the old mesh, a map between finite element rep-

resentations on the old and new meshes and finally a mapping from a finite element

representation back into control-volumes on the new mesh. The overall convergence of

the method can be studied by bounding the interpolation errors in each of these three

projections.
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Appendix A.1. Error Analysis for Projections (1) and (3)

We begin by considering the error in the projection between control-volume and

finite element meshes. In the case of a finite element representation, the errors in

Eq. 4 and Eq. 7 are identically zero. This follows from the definition of finite element

interpolation from or onto a control-volume mesh and can be seen clearly in Fig. 2 by

regarding the error as the difference between the finite element interpolation and the

initial control-volume functions.

Appendix A.2. Error Analysis for Projection (2)

We now consider the error in Eq. 6, the FEM Galerkin projection from old to new

mesh. Let an element Ek be a tetrahedron over a 3D domain Ω, Inew and Iold are the

interpolation operators over the new and old meshes respectively. f = ψnew
FEM
− ψold

FEM
∈

H1(Ω) (where ψnew
FEM
= Inewψ and ψold

FEM
= Ioldψ). According to the Poincare inequality,

there then exists a constant C, such that

‖ψnew
FEM − ψold

FEM‖L2(Ω) ≤ C

K
∑

k=1

d
∑

i=1

hi(Ek)

∥

∥

∥

∥

∥

∂ψ

∂xi

∥

∥

∥

∥

∥

L2(Ek )

(A.1)

where Ek ∈ (E1, . . . , EK ) (K is the total number of elements over the domainΩ), d = 3

is the dimensional size of the domain, hi(Ek) are suitably defined element sizes on the

element Ek [31].

The error bound in Eq. A.1 can be further estimated [32] as:

‖ψnew
FEM − ψold

FEM‖2L2(Ω) ≤ C

K
∑

k=1

h2κ(Ek)σ−2
min(AEk

)VEk
(A.2)

where AEk
is the edge shape matrix, σmin is the minimal singular value of AEk

, κ is

the order of approximation of the finite element degrees of freedom and VEk
is the

volume of the element Ek. Since we have argued that the convergence behaviour of

the interpolation method is governed by the second step, we can conclude from the

above that the method is higher-order. The error bound Eq. A.2 is consistent with the

higher-order numerical example in the main text. In that case, a first order discretisation

(κ = 1) for pressure was used, and thus quadratic h2(Ek) convergence is expected, as

seen in Fig. 8.
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