12,326 research outputs found

    A Method to Determine the In-Air Spatial Spread of Clinical Electron Beams

    Get PDF
    We propose and analyze in detail a method to measure the in-air spatial spread parameter of clinical electron beams. Measurements are performed at the center of the beam and below the adjustable collimators sited in asymmetrical configuration in order to avoid the distortions due to the presence of the applicator. The main advantage of our procedure lies in the fact that the dose profiles are fitted by means of a function which includes, additionally to the Gaussian step usually considered, a background which takes care of the dose produced by different mechanisms that the Gaussian model does not account for. As a result, the spatial spread is obtained directly from the fitting procedure and the accuracy permits a good determination of the angular spread. The way the analysis is done is alternative to that followed by the usual methods based on the evaluation of the penumbra width. Besides, the spatial spread found shows the quadratic-cubic dependence with the distance to the source predicted by the Fermi-Eyges theory. However, the corresponding values obtained for the scattering power are differing from those quoted by ICRU nr. 35 by a factor ~2 or larger, what requires of a more detailed investigation.Comment: 11 pages, 5 Postscript figures, to be published in Medical Physic

    Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point

    Get PDF
    The temperature dependence of the interlayer electrical and thermal resistivity in a layered metal are calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferromagnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad temperature range. Extrapolations to zero temperature made from this linear-TT range give values that appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on CeCoIn5_5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not necessarily imply a non-Fermi liquid ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let

    Observations of the structure and evolution of solar flares with a soft X-ray telescope

    Get PDF
    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented

    Phenology and growth response to irrigation and sowing date of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate

    Get PDF
    The photothermal response of three Kabuli chickpea (Cicer arietinum L.) cultivars, at different growth stages, to eight irrigation treatments in 1998/99 and four irrigation treatments in 1999/2000 was studied on a Wakanui silt loam soil in Canterbury, New Zealand (43°38S, 172°30E). The rate of development from emergence to flowering (e-f) and sowing to harvest maturity were strongly and positively associated (R²=0·87, P<0·001) with mean temperature during those periods. All phenological stages considered (sowing to emergence, e-f, flowering to podding, podding to physiological maturity and physiological maturity to harvest maturity) depended upon accumulated thermal time (Tt) above a base temperature (Tb) of 1 °C. An accurate prediction of time of flowering was made based on an accumulated mean Tt requirement of 629 °Cdays from e-f (R²=0·91, P<0·001). Fully irrigated crops had higher maximum dry matter accumulation (maxDM; 1093 g/m²), duration of exponential growth (DUR; 99 days), weighted mean absolute growth rate (WMAGR; 12·2 g/m² per day) and maximum crop growth rate (MGR; 17·1 g/m² per day). In 1998/99 the positive response of maxDM and MGR depended on a significant (P<0·01) interaction between irrigation and sowing date. The maxDM during the season was highly correlated with DUR and MGR (R²=0·79 and 0·65). It is concluded that to maximize chickpea biological yield in the dry season of the cool-temperate subhumid climate of Canterbury, irrigation should extend across all phenological stages

    Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies

    Get PDF
    Many of the most interesting and technologically important electronic materials discovered in the past two decades have two common features: a layered crystal structure and strong interactions between electrons. Two of the most fundamental questions about such layered metals concern the origin of intralayer anisotropies and the coherence of interlayer charge transport. We show that angle dependent magnetoresistance oscillations (AMRO) are sensitive to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe of intralayer anisotropies that is complementary to angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). However, AMRO are not very sensitive to the coherence of the interlayer transport. We illustrate this with comparisons to recent AMRO experiments on an overdoped cuprate.Comment: 7 pages, 3 figure

    Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation

    Full text link
    The phase diagram of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2Cl has been investigated by ultrasonic velocity measurements under helium gas pressure. Different phase transitions were identified trough several elastic anomalies characterized from isobaric and isothermal sweeps. Our data reveal two crossover lines that end on the critical point terminating the first-order Mott transition line. When the critical point is approached along these lines, we observe a dramatic softening of the velocity which is consistent with a diverging compressibility of the electronic degrees of freedom.Comment: 4 pages, 5 figure

    Fermi surface of underdoped cuprate superconductors from interlayer magnetoresistance: closed pockets versus open arcs

    Get PDF
    An outstanding question about the underdoped cuprates concerns the true nature of their Fermi surface which appears as a set of disconnected arcs. Theoretical models have proposed two distinct possibilities: (1) each arc is the observable part of a partially hidden closed pocket and (2) each arc is open, truncated at its apparent ends. We show that measurements of the variation in the interlayer resistance with the direction of a magnetic field parallel to the layers can qualitatively distinguish closed pockets from open arcs. This is possible because the field can be oriented such that all electrons on arcs encounter a large Lorentz force and resulting magnetoresistance whereas some electrons on pockets escape the effect by moving parallel to the field. © 2010 The American Physical Society

    Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna

    Full text link
    We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10^9 and clock phase noise by 6x10^4, recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in post-processing marks the first experimental validation of the LISA measurement scheme.Comment: 4 pages, 4 figures, to appear in Physical Review Letters end of May 201

    Patchy Reconnection in a Y-Type Current Sheet

    Get PDF
    We study the evolution of the magnetic field in a Y-type current sheet subject to a brief, localized magnetic reconnection event. The reconnection produces up- and down-flowing reconnected flux tubes which rapidly decelerate when they hit the Y-lines and underlying magnetic arcade loops at the ends of the current sheet. This localized reconnection outflow followed by a rapid deceleration reproduces the observed behavior of post-CME downflowing coronal voids. These simulations support the hypothesis that these observed coronal downflows are the retraction of magnetic fields reconnected in localized patches in the high corona.Comment: 4 pages, 3 figure
    corecore