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SUMMARY

The photothermal response of three Kabuli chickpea (Cicer arietinum L.) cultivars, at different
growth stages, to eight irrigation treatments in 1998/99 and four irrigation treatments in 1999/2000
was studied on a Wakanui silt loam soil in Canterbury, New Zealand (43x38S, 172x30E). The rate of
development from emergence to flowering (e-f ) and sowing to harvest maturity were strongly and
positively associated (R2=0.87, P<0.001) with mean temperature during those periods. All phenol-
ogical stages considered (sowing to emergence, e-f, flowering to podding, podding to physiological
maturity and physiological maturity to harvest maturity) depended upon accumulated thermal time
(Tt) above a base temperature (Tb) of 1 xC.
An accurate prediction of time of flowering was made based on an accumulated mean Tt require-

ment of 629 xCdays from e-f (R2=0.91, P<0.001). Fully irrigated crops had higher maximum dry
matter accumulation (maxDM; 1093 g/m2), duration of exponential growth (DUR; 99 days),
weighted mean absolute growth rate (WMAGR; 12.2 g/m2 per day) and maximum crop growth rate
(MGR; 17.1 g/m2 per day). In 1998/99 the positive response of maxDM and MGR depended on a
significant (P<0.01) interaction between irrigation and sowing date. The maxDM during the season
was highly correlated with DUR and MGR (R2=0.79 and 0.65). It is concluded that to maximize
chickpea biological yield in the dry season of the cool-temperate subhumid climate of Canterbury,
irrigation should extend across all phenological stages.

INTRODUCTION

Indeterminate, diploid (2n=16), self-pollinated
Kabuli chickpea (Cicer arietinum L.) is a quantitative
long day plant and is one of the most widely culti-
vated cool season food legumes (Davis et al. 1990). It
is best adapted to spring–early summer seasons of the
Mediterranean and cool winter temperatures in the
semi-arid tropics (Jettner et al. 1999). The world av-
erage seed yield of 796 kg/ha (FAO 2002) results in
a shortfall between production and demand in most
countries. Phenology (development) refers to onto-
logical changes occurring at different distinct phases
in a crop’s life cycle (Angus et al. 1981). Water stress

can affect the phenological stages by shortening crop
duration and speeding up maturity (Singh 1991).
Chickpea yield is reputed to be most responsive when
irrigated at flowering and pod filling (Malhotra et al.
1997). The dynamics of chickpea phenology vary with
cultivar, photoperiod, temperature and soil water
status and changes in morphology, development and
maturity may determine the economic yield (Soltani
et al. 1999). The most important step towards maxi-
mizing yield of chickpea is to ensure that the phe-
nology of the crop or cultivar is well matched to
resources and constraints of the production environ-
ment (Summerfield et al. 1990). Flowering time is
important because environmental conditions during
the reproductive phase have a major impact on final
yield. The onset of flowering often determines the
entire crop duration (Egli 1998).
Improvement of chickpea yield potential could be

linked to increased biomass production, increased
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harvest index or both (Soltani et al. 1999). Biomass
production is, in turn, associated with leaf area ex-
pansion, duration and water use (Zhang et al. 2000).
Irrigation generally increases biomass accumulation
of grain legumes, including chickpea, during dry
seasons. However, the magnitude of the response
varies widely with site, season and sowing date
(Malhotra et al. 1997). Chickpea crops exhibit
characteristic sigmoid growth curves with a slow ac-
cumulation of dry matter (DM) after seedling estab-
lishment followed by an exponential growth phase
until pod set (Khanna-Chopra & Sinha 1987). Dry
matter accumulation during the exponential phase is
an expression of maximum crop growth rate (MGR)
and there is a close association between maximum
DM and MGR (Ball et al. 2000).
The present paper investigates phenological devel-

opment of Kabuli chickpea cultivars, especially the
response of phenology and flowering time to irri-
gation and sowing date in order to improve the
understanding of chickpea growth and development
in a cool-temperate subhumid climate at Canterbury,
New Zealand.

MATERIALS AND METHODS

Two sites were used in research fields of Lincoln Uni-
versity, Canterbury, New Zealand (43x38S, 172x30E)
on a Wakanui silt loam soil (Hewitt 1992). Barley
(Hordeum vulgare) was grown in the season before the
1998/99 experiment, while perennial ryegrass (Lolium
perenne) preceded the 1999/2000 experiment. The soil
had an available moisture storage capacity of about
300 mm of water per 1 m soil depth (Anwar et al.
1999). The soil was of moderately high fertility in the
0–30 cm depth (Table 1). The climate of Canterbury
is characteristic of a cool-temperate subhumid climate
(Dapaah 1997), with about 600 mm of rain evenly
spread over the year.
In the present study irrigation treatments were

selected to provide a wide range of potential soil
moisture deficits during the vegetative stage, flower-
ing, and pod filling to physiological maturity phases
of plant development (Table 2). The experimental lay-
out was a split–split plot randomized complete block
design with eight irrigation levels during the 1998/99
season and four irrigation levels during 1999/2000 as
main plots (Table 2). Subplots were two sowing dates

(3 November and 7 December in 1998/99 and 18
October and 22 November in 1999/2000). Three
high-yielding, early-flowering, Aschochyta blight-
resistant Kabuli chickpea cultivars (Sanford, Dwelley
and B-90) were sub-subplots. They were randomly
assigned within each subplot, with two replicates, giv-
ing a total of 96 plots in 1998/99. In the second season
(1999/2000) the sub-subplots were two Kabuli
chickpea cultivars (Sanford and B-90), with three
replicates, giving a total of 48 plots. Each subplot
was 10 m long with 14 rows that were 15 cm apart in
both experiments.
To accurately apply irrigation water, T-tape was

placed in every second row (30 cm spacing). The
amount of water applied was measured with a flow
meter (Neptune, type Sz, size 25.4 mm). Irrigation
was applied weekly to replace the previous week’s
water loss according to a soil moisture deficit water
balance (Eqn 1).

Table 1. Chemical properties for 0–30 cm soil depth for Iversen field research area during 1998/99 and Henley
field research area during 1999/2000 of Lincoln University, Canterbury. Ca, K, P, Mg and Na, S, B, NH4

+-N and
NO3

x-N (mg/g of soil) ; C (organic) and total nitrogen (TN) as mg/g

>Season pH Ca K P Mg Na S B C NH4
+ NO3

x TN

1998/1999 6.3 10 13 18 22 8 3 0.4 24 4.3 1 2.0
1999/2000 5.8 10 8 13 30 8 9 0.6 31 5.0 <1 2.7

Table 2. The irrigation treatments (mm of water) ap-
plied via a T-tape irrigation system to Kabuli chickpea
experiments, conducted in Canterbury, New Zealand,

1998/99 and 1999/2000

Sowing date

Irrigation treatments* 3 Nov 1998 7 Dec 1998

1998/99
1 Nil 0 0
2 Full (e-m) 231 218
3 Full (e-f ) 197 163
4 Half (e-f ) 99 82
5 Full (f-p) 99 68
6 Half (f-p) 41 43
7 Full (p-pm) 27 75
8 Half (p-pm) 14 48

18 Oct 1999 22 Nov 1999
1999/2000
1 Nil 0 0
2 Full (e-m) 105 109
3 Full (f-p) 61 58
4 Full (p-m) 51 58

* Irrigation treatments : nil, rain fed only; full, irrigation to
replace water lost through evapotranspiration; half, irri-
gation to replace half the full amount lost. Further details in
text.
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A=
X

Epx(I+R) (1)

where Ep is the rate of potential evapotranspiration
(mm/day) ; during the period for which any treatment
was being irrigated it received an amount of water (A)
equal to the difference between estimated potential
evapotranspiration and rainfall (R) plus irrigation (I )
in the previous week.
The seedbed was prepared using standard farm

practice. Weed control was achieved with two appli-
cations of cyanazine at 1.7 kg a.i./ha applied pre-
sowing (7 days before) and pre-emergence (7 days after
sowing). All post-emergence weeding was by hand.
The seed was treated with a systemic fungicide Apron
C 70 SD (a.i. metalaxyl 350 g/kg and captan 350 g/kg)
at the rate of 200 g (dissolved in 500 ml of water) per
100 kg seed. Seed, which had a germination ofo90%,
was sown with a tractor-driven cone seeder to give a
population of approximately 50 plants/m2. The exper-
iments received no fertilizer, fungicide or insecticide.
Crop phenology was monitored at 1–2 day intervals

throughout the season and five stages of crop devel-
opment were determined. These were: emergence (the
time when 50% of seedlings had emerged in any plot) ;
flowering (50% of the plants had one open flower at
any node on the main stem in any plot) ; podding
(50% of plants had at least one emerged green pod in
any plot) ; physiological maturity (50% of the plants
had at least one mature (brown) pod in any plot) ; and
harvest maturity (when plants were dry enough to be
combine harvested). The time taken to complete each
phenological phase, i.e. sowing to emergence (s-e),
emergence to flowering (e-f ), flowering to podding
(f-p), podding to physiological maturity (p-m) and
sowing to harvest maturity (s-h) was recorded in days
and the inverse of that was defined as the rate of devel-
opment. The response of ‘development rate’ for e-f
and s-h to temperature, photoperiod and temperature
corrected for photoperiod were examined. The tem-
perature data, photoperiod from sunrise to sunset
and long-term means were collected from the records
of the Broadfield Meteorological Station at Lincoln
University. The average mean daily photoperiod (P)
and daily mean temperatures (T ) were calculated for
each of the growth phases. Thermal time (Tt) between
any two phenological stages was calculated as the
time integral of mean T above a base temperature
(Tb) of 1 xC, using Eqn 2. Literature estimates of base
temperature for chickpea range from 0 to 8 xC (Singh
1991; Summerfield et al. 1990).

Tt=
XStage B

Stage A

[[(Tmin+Tmax)=2]xTb] (2)

where Tmin is the minimum temperature, and Tmax the
maximum temperature between two stages of devel-
opment.

The temperature corrected for photoperiod (Tpp)
was calculated from the method of Gallagher et al.
(1983) as in Eqn 3:

(Tpp)=[(TxTb)(PxPb)]=(24xPb) (3)

where T is the mean temperature of the stage being
considered, P is the mean photoperiod over the stage
considered and Pb is the base photoperiod (15 h used
in the present study).
Drymatter (DM) accumulation over the seasonwas

measured from 0.2 m2 samples taken every 10 days
from 28 days after sowing (DAS) until harvest ma-
turity. The samples were oven dried at 70 xC for 48 h
in a force draught oven and weighed. A functional
growth analysis was made using a Maximum Likeli-
hood Programme (MLP) from Rothamsted Exper-
imental Station, UK (Ross et al. 1987). Generalized
logistic curves of the form of Eqn 4 were used to
describe DM accumulation of the crops (Gallagher &
Robson 1984).

Y=C=[1+Tx exp[xb(xxm)]]1=T (4)

where Y is yield, C is the final above-ground dry
matter and T, b and m are constants.
The weighted mean absolute growth rate

(WMAGR – the mean growth rate over the period
when the crop accumulated most of its DM), duration
of exponential growth (DUR – duration of crop
growth over which most growth occurred) and maxi-
mum crop growth rate (MGR) were derived for the
crop using the values of C, T, b and m according to
Eqns 5–7:

WMAGR=bC=2(T+2) (5)

DUR=2(T+2)=b (6)

MGR=bC=(T+1)(T+1=T) (7)

All variates were analysed using analysis of vari-
ance. The statistical package used was Genstat 5
(Genstat 5 Committee of the Statistics Department,
Rothamsted Experimental Station, Hertfordshire,
UK). For the data in graphs where interaction be-
tween irrigation and sowing dates was significant, an
interaction S.E. bar is presented for the comparison of
treatment effects.

RESULTS

Meteorological data for the two cropping seasons
(1998/99 and 1999/2000) are presented in Fig. 1.
Weather from October to April in 1998/99 was dry.
The rainfall was about 40% below the long-term av-
erage. Rainfall in October, November, December,
January, February, March and April was 57, 20, 24,
36, 38, 56 and 36 mm respectively compared with the
55-year corresponding mean values of 55, 56, 61, 50,
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51, 59 and 52 mm (Fig. 1). Total rainfall during the
entire growing season (sowing to 90% physiological
maturity) was about 200 mm. The maximum and
minimum temperatures were similar to their long-
term averages, but mean temperature increased by
about 5% in the months of January, February and
March 1999. Solar radiation from January to March
1999 was about 7% higher than the long-term aver-
age and the Penman evapotranspiration (penET)
during February and March was about 10% higher
than the long-term average.
Total rainfall from October 1999 to April 2000 was

353 mm, about 90% of the long-term average. Over-
all, rainfall during the growing season (sowing to
physiological maturity) was approximately 260 mm.
In 1999/2000, the maximum and minimum tempera-
tures were similar to the long-term averages (Fig. 1).
However, the mean monthly maximum tempera-
tures during December 1999 and January 2000 were
18.9 and 19.5 xC, respectively, compared with the
55-year mean values of 21.3 and 22.6 xC. Solar radi-
ation from December 1999 to March 2000 was about
10% higher than the long-term mean. In January
2000 the penET was about 25% lower than normal.
Photoperiod (sunrise to sunset including civil twi-
light) was calculated for both the seasons using a
computer routine program adopted from LINZ
(1999).

Phenological development

Irrigation during any phase of development signifi-
cantly (P<0.001) increased the chronological time
required for flowering, podding, physiological and
harvest maturity (Table 3) in 1998/99, but not in
1999/2000. Time from sowing to emergence (s-e) and
flowering (s-f ) varied significantly (P<0.001) among
sowing dates (Table 3). In 1998/99, the December-
sown crops emerged earlier (11 days) while the
October 1999/2000 sown crop required 16 days to
complete this phase. There was no difference in the
time to reach each phenological stage among the
cultivars. The phase s-f required an average of about
53 days (range 49–65 days). The number of days to
podding was faster by 11 days in the December 1998/
99 sowing but plants reached physiological maturity
21 days later than the November sowing. Crops gen-
erally flowered, podded and reached physiological
maturity faster in 1998/99 than in 1999/2000. The
crop duration from sowing to harvest maturity
ranged from 117 to 152 days (Table 3).
The duration of s-e and emergence to flowering

(e-f ) showed a linear decrease, as a function of mean
daily temperature (Fig. 2a, c). The rate of develop-
ment from s-e and e-f was strongly (R2=0.90 and
0.87, P<0.001) and linearly related to mean tem-
perature (Fig. 2b, d ). Extrapolation of the regression
lines gave a base temperature (Tb) of 0.25 and

Table 3. The main effects of irrigation and sowing date on the time (number of days after sowing) to reach each
phenological stage in Kabuli chickpea in Canterbury, New Zealand, 1998/99 and 1999/2000

Irrigation
treatments# Emergence Flowering Podding

Physiological
maturity

Harvest
maturity

1998/99
Nil 13 51 63 94 111
Full (e-m) 13 55 71 106 122
Full (e-f ) 13 55 70 103 119
Half (e-f ) 14 52 69 99 119
Full (f-p) 14 52 66 98 119
Half (f-p) 14 52 66 100 119
Full (p-m) 14 52 64 103 119
Half (p-m) 14 52 63 101 119
S.E. (D.F.=7) 0.2 0.3 0.1 6.6 0.4

Sowing date
Nov 3 16 56 72 90 118
Dec 7 11 49 61 111 117

S.E. (D.F.=32) 0.3 0.5 0.4 8.4 0.01

1999/2000
Sowing date
Oct 18 16 61 79 120 152
Nov 22 14 65 74 109 142

S.E. (D.F.=16) 0.2 0.3 0.1 0.4 0.3

# Irrigation treatments as in Table 2.
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1.17 xC. Therefore, Tb was chosen to be 1 xC. The rate
of development from E-F showed a significant linear
relationship (R2=0.52, P<0.01) with photoperiod
above a suggested base photoperiod (Pb) of 14.9 h
(Fig. 3a). Furthermore, taking account of the
response of the rate of development from e-f and
mean temperature to photoperiod by examining
temperature corrected for photoperiod (Tb=1 xC and
Pb=15 h) showed a significant linear relationship
(R2=0.83, P<0.01) (Fig. 3b).

Thermal time

There was a significant (P<0.001) difference in ther-
mal time (Tt) duration from sowing to harvest ma-
turity (s-h) of Kabuli chickpea crops between sowing
date and seasons (Table 4). The e-f, flowering
to podding (f-p), podding to physiological maturity
(p-m) and physiological maturity to harvest maturity
(m-h) phases were significantly (P<0.001) affected
by irrigation in the 1998/99 season and were strongly
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related to temperature. The Tt for e-f and s-h for
the December-sown crops was higher than in the
November-sown crops (Table 4). Generally, crops
with late or no irrigation had a significantly (P<
0.001), shorter Tt requirement to reach e-f and s-h.
The mean Tt requirement for f-p, p-m and m-h
phases was 254, 575 and 316 xCdays respectively.
The Tt duration was used to predict flowering for

Kabuli chickpeas using the technique of McKenzie
& Hill (1989) with photothermal time for lentils. As
shown in Fig. 4, the relationship between the predicted
and actual dates of flowering was highly significant
with R2=0.91, indicating flowering date for Kabuli
chickpea could be accurately predicted.

Dry matter accumulation
( functional growth analysis)

Irrespective of cultivar or sowing date, dry matter
(DM) accumulation was well described by a sigmoid
pattern with a decrease at the end due mostly to fall-
ing leaflets (Fig. 5). Full irrigation significantly

increased DM accumulation pre and post anthesis.
Duration of the initial phase was shorter and the
initial growth rate was higher in 1998/99 (Fig. 5a, b).
The linear growth phase, which accounted for one
third to half of the duration from emergence to har-
vest, was the period when the major proportion of
DM accumulation (i.e. 72–93%) took place (Table 5).
In both years (1998–2000) full irrigation from emerg-
ence to physiological maturity (full (e-m)) gave a sig-
nificantly (P<0.001) higher maximum dry matter
(maxDM) production than nil and late irrigation
from pod-set to maturity (nil (p-m) and late (p-m)).
Averaged over 2 years, fully irrigated crops produced
64% more maxDM at 1093 g/m2 than nil and late
irrigation. Maximum crop growth rate (MGR) also
followed a similar trend (Table 5). Averaged over 2
years, MGR was 26–30% higher in the fully irrigated
crops (c. 17 g/m2/day) than in the unirrigated crop (c.
13.4 g/m2/day). In 1998/99, the effect of irrigation on
maxDM andMGR depended on sowing date (Fig. 6).
In the November sowing full irrigation increased
maxDM and MGR by about 111 and 34%, respect-
ively. At two irrigation levels (nil and full (f-p)),
December-sown plants accumulated more maxDM
(10–28%) than November-sown plants. However, at
all irrigation levels MGRwas higher in the November
sowing than the December-sown plants.
The duration of the exponential phase of crop

growth over which most growth occurred (DUR) and
the weighted mean absolute growth rate (WMAGR),
the mean growth rate over the period when the crop
accumulated most of its DM, was also significantly
(P<0.001) affected by irrigation. Fully irrigated
crops had the longest DUR at 99 days (Table 5). In
1998/99, full (e-m) showed the fastest WMAGR. In
1999/2000, irrigation decreased WMAGR by 15%.

DISCUSSION

The present study revealed that temperature was the
dominant factor that affected Kabuli chickpea phe-
nology among sowing dates (SD) and under different
irrigation levels, consistent with previous results
(Summerfield et al. 1994; Siddique et al. 1999). The key
difference in phenology between SD was in the time
from s-e and from f-m. When chickpea seed was
sown in October and November, the crop required
c. 16 days for emergence because of low temperature
(c. 12 xCmean) and during December (c. 16 xCmean)
it only took 11 days. The rate of development from
s-e showed a strong and significant relationship with
temperature (R2=0.90, Fig. 2b) indicating that pre-
diction of emergence was reliable. The thermal time
for this phase ranged from 164–234 xCdays, a similar
value to that for lentils (McKenzie & Hill 1989). The
December-sown crop encountered higher tempera-
tures (c. 20 xC+, maximum) and decreasing photo-
period during its vegetative growth phase that
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enhanced phenological development, thus shortening
the period from s-f (49 days) and the start of pod
filling (Table 3). The estimate of the base temperature
of 1 xC was within the range of previous estimates for

chickpea (range 0–8 xC) (Singh 1991; Summerfield
et al. 1990).
The two field environments were characterized by

high solar radiation (16–25 MJ/m2/day). The mean
daily minimum temperatures during the growing
season in 1999/2000 were consistently lower than
long-term averages (c. 8–11 xC, Fig. 1), which resulted
in differences in crop duration. However, the thermal
time duration from s-m was similar between the two
seasons with means of 1905 xCdays and 2096 xCdays
in 1998/99 and 1999/2000, respectively. Similar results
were observed by Horn et al. (1996) in Australia.
Comparisons between the rainfed and irrigated treat-
ments indicated that drought stress could induce
substantial reductions in the duration to flowering
and crop maturity in Kabuli chickpea. Similar re-
sponses to drought have been reported for other grain
legume species including lupins (French & Turner
1991), and faba bean (De Costa et al. 1997). The
mechanism appears to involve an increase in leaf or
canopy temperature (Finch-Savage & Elston 1977),
which accompanies water stress. In the rainfed plots,
thermal time duration from s-m decreased from
1968 xCdays to about 1800 xCdays. The estimated
mean thermal time durations for flowering
(650 xCdays) and up to harvest (2000 xCdays) in the
present study agrees closely with the estimates of
Singh (1991) and Ramteke et al. (1996) for chickpea.

Table 4. The main effect of irrigation and sowing date on the thermal time for physiological growth phases of
Kabuli chickpea in Canterbury, New Zealand, 1998/99 and 1999/2000

Irrigation
treatments#

Thermal time for phase (xCdays), Tb=1 xC

s-e e-f f-p p-m m-h Total (s-h)

1998/99
Nil 189 607 214 529 316 1802
Full (e-m) 186 681 292 599 279 1968
Full (e-f ) 186 682 270 560 285 1912
Half (e-f ) 194 612 310 508 355 1912
Full (f-p) 194 612 262 512 358 1912
Half (f-p) 194 612 256 577 340 1912
Full (p-m) 194 612 223 666 285 1912
Half (p-m) 194 612 206 651 312 1912
S.E. (D.F.=7) 2.5 2.3 5.2 33.0 11.5 0.8

Sowing date
Nov 3 217 581 311 306 494 1845
Dec 7 165 677 197 845 138 1966

S.E. (D.F.=32) 4.7 6.4 9.9 58.0 8.3 1.9

1999/2000
Sowing date
Oct 18 234 604 248 649 489 2174
Nov 22 181 733 136 576 442 2018

S.E. (D.F.=16) 2.5 5.3 4.3 5.3 4.9 3.4

s-e, sowing to emergence; e-f, emergence to flowering; f-p, flowering to podding; p-m, podding to physiological maturity;
m-h, physiological maturity to harvest maturity; s-h, sowing to harvest maturity and Tb, base temperature.
# Irrigation treatments in Table 2.
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Fig. 4. Relationship between predicted and actual dates of
flowering in Kabuli chickpea in Canterbury, New Zealand,
1998–2000 (Y=1.86+0.96X, R2=0.91).
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Time to flowering and maturity is often affected
by both temperature and photoperiod. Flowering in
many genotypes of chickpeas is moderated by photo-
period (Summerfield et al. 1994). Therefore, it is
usually recommended that modelling the rate of prog-
ress towards flowering in chickpea is done in terms of
photothermal response (Ellis et al. 1994). In the

present work, however, the relationship between
flowering rate and photothermal time (Fig. 3b) ex-
plained less variability (87%) than did the relation-
ship between flowering rate and temperature (Fig. 2d).
Over the period e-f, the variation in mean photo-
period was small (14–16 h). This probably explains
the lack of effect on time to flowering. Summerfield &
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Fig. 5. Dry matter accumulation of chickpea as affected by irrigation levels and sowing date in Canterbury (1998–2000).
Y=C/(1+T exp(xb(xxm)))1/T. Irrigation treatments described in the text. Arrows indicate (f ) flowering, (p) podding and
(m) physiological maturity.
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Roberts (1988) reported variation in response of leg-
ume species to photoperiod.
These results provide valuable new information for

modelling chickpea growth and development in cool-
temperate subhumid climates. Simulation models
of lentil (McKenzie et al. 1994) and pinto bean
(Phaseolus vulgaris L., Dapaah et al. 1999) growth
and development have shown various responses to
temperature and photoperiod. The lack of response
to photoperiod shown in the present work with these
chickpea cultivars indicates that simulation modellers
will need to use appropriate equations when model-
ling all stages, but e-f in particular.
One other aspect of modelling that these results

may influence is the response of phenology to irri-
gation. While all crop models include a function
whereby irrigation alleviates water stress, resulting in
increased dry matter production, many models do not
consider the alteration of development times due to
irrigation. The present data set clearly shows that
irrigation can delay development, resulting in longer
duration of growth, and higher yields.
Functional growth analysis of maxDM showed

that the positive response to irrigation of chickpea
was due to increases of both the duration of ex-
ponential growth and the maximum crop growth rate.
Faster growth rates are associated with increased
light interception that is the function of greater green

Table 5. The main effects of irrigation and sowing date on maximum dry matter (maxDM), duration of
exponential growth (DUR), the weighted mean absolute growth rate (WMAGR) and maximum crop growth

rate (MGR) of Kabuli chickpea in Canterbury, New Zealand 1998–2000

Irrigation
treatments#

MaxDM
dry matter (g/m2)

DUR
(days)

WMAGR
(g/m2 per day)

MGR
(g/m2 per day)

1998/99
Nil 571 49 11.6 13.3
Full (e-m) 1067 99 10.9 16.8
Full (e-f ) 766 60 12.8 16.2
Half (e-f ) 677 61 11.2 14.9
Full (f-p) 865 87 10.0 15.1
Half (f-p) 731 70 10.5 14.6
Full (p-m) 815 84 9.9 14.3
Half (p-m) 811 82 10.1 14.8
S.E. (D.F.=7) 13.9 6.5 0.7 0.3

Sowing date
Nov 3 766 71 11.0 15.7
Dec 7 809 76 10.8 14.2
S.E. (D.F.=32) 18.4 8.0 0.7 0.4

1999/2000
Nil 607 47 13.3 13.4
Full (e-m) 1120 99 11.6 17.4
Full (f-p) 659 65 11.1 13.4
Full (p-m) 679 80 8.6 11.4
S.E. (D.F.=16) 30.0 12.3 1.6 1.0

# Irrigation treatments as in Table 2.
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area index and duration (Ball et al. 2000). These find-
ings can form the basis of irrigation management to
optimize chickpea development. The yield potential
of chickpea can be increased by modifying its phe-
nology, because crop yield is fundamentally related to
different phenological stages which affect the capture
and utilization of different environmental resources
such as solar radiation, nutrients and water (Saxena
et al. 1990).
These results have provided chickpea growers in

New Zealand with a valuable set of guidelines for
sowing date and irrigation strategies. Clearly, sowing
date is not as important with chickpeas as with both

lentils and peas. Phenological development of the
chickpea crop permits later sowing than other leg-
umes in Canterbury, as yields are high due to ad-
equate crop duration and high growth rates.
Chickpeas can therefore fit easily into cropping ro-
tations, as an early or autumn sown crop can be har-
vested and followed rapidly by a sowing of chickpea.

The authors would like to thank Dr Bert Vanden-
berg of the University of Saskatchewan, Canada for
supplying the Kabuli chickpea seed and the Lincoln
University Research Committee for providing funds
for the projects.

REFERENCES

ANGUS, J. F., CUNNINGHAM, R. B., MONCUR, M. W. &
MACKENZIE, D. H. (1981). Phasic development in field
crops. I. Thermal response in the seedling phase. Field
Crops Research 3, 365–378.

ANWAR, M. R., MCKENZIE, B. A. & HILL, G. D. (1999).
Water use efficiency of chickpea (Cicer arietinum L.)
cultivars in Canterbury: effect of irrigation and sowing
date. Agronomy New Zealand 29, 1–8.

BALL, R. A., PURCELL, L. C. & VORIES, E. D. (2000). Opti-
mizing soybean plant population for a short-season pro-
duction system in the Southern USA. Crop Science 40,
757–764.

DAPAAH, H. K. (1997). Environmental influences on the
growth, development and yield of pinto beans (Phaseolus
vulgaris L.). Ph.D. thesis, Lincoln University, Canter-
bury, New Zealand.

DAPAAH, H. K., MCKENZIE, B. A. & HILL, G. D. (1999).
Effects of irrigation and sowing date on phenology and
yield of pinto beans (Phaseolus vulgaris L.) in Canterbury,
New Zealand. New Zealand Journal of Crop and Horti-
cultural Science 27, 297–305.

DAVIS, T. M., MATTHEWS, L. J. & FAGERBERG, W. R. (1990).
Comparison of tetraploid and single gene-induced gigas
variants in chickpea (Cicer arietinum). I. Origin and
genetic characterization. American Journal of Botany 77,
295–299.

DE COSTA, W. A. J. M., DENNETT, M. D., RATNAWEERA, U.
& NYALEMEGBE, K. (1997). Effects of different water
regimes on field-grown determinate and indeterminate
faba bean (Vicia faba L.). I. Canopy growth and biomass
production. Field Crops Research 49, 83–93.

EGLI, D. B. (1998). Seed Biology and the Yield of Grain
Crops. New York: CAB International.

ELLIS, R. H., LAWN, R. J., SUMMERFIELD, R. J., QI, A.,
ROBERTS, E. H., CHAY, P. M., BROUWER, J. B., ROSE, J. L.,
YEATES, S. J. & SANDOVER, S. (1994). Towards the reliable
prediction of time to flowering in six annual crops. V.
Chickpea (Cicer arietinum). Experimental Agriculture 30,
271–282.

FAO (2002). FAOSTAT agricultural statistics database
[Online] http://Apps.Fao.Org. Date of access: 04/13/
2002.

FINCH-SAVAGE, W. E. & ELSTON, J. (1977). The death of
leaves in crops of field beans. Annals of Applied Biology
85, 463–465.

FRENCH, R. J. & TURNER, N. C. (1991). Water deficits
change dry matter partitioning and seed yield in narrow-
leafed lupins (Lupinus angustifolius L.). Australian Journal
of Agricultural Research 42, 471–484.

GALLAGHER, J. N., BISCOE, P. V. & DENNIS-JONES, R. (1983).
Environmental influences on the development, growth
and yield of barley. In Barley: Production and Marketing
(Eds G. M. Wright & R. B. Wynn-Williams), pp. 21–49.
New Zealand: Agronomy Society of New Zealand.

GALLAGHER, J. N. & ROBSON, A. B. (1984). Fitting Growth
Sigmoidal Curves using MLP – an Interim Guide. Canter-
bury, New Zealand: Lincoln College.

HEWITT, A. E. (1992).New Zealand Soil Classification. DSIR
Land Resources Scientific Report No. 19. Lower Hutt,
New Zealand: DSIR.

HORN, C. P., DALAL, R. C., BIRCH, C. J. & DOUGHTON, J. A.
(1996). Sowing time and tillage practice affect chickpea
yield and nitrogen fixation. 1. Dry matter accumulation
and grain yield. Australian Journal of Experimental
Agriculture 36, 695–700.

JETTNER, R. J., SIDDIQUE, K. H. M., LOSS, S. P. & FRENCH,
R. J. (1999). Optimum plant density of desi chickpea
(Cicer arietinum L.) increases with increasing yield po-
tential in south-western Australia. Australian Journal of
Agricultural Research 50, 1017–1025.

KEISLING, T. C. (1982). Calculation of the length of day.
Agronomy Journal 74, 758–759.

KHANNA-CHOPRA, R. & SINHA, S. K. (1987). Chickpea:
physiological aspects of growth and yield. In The Chick-
pea (Eds M. C. Saxena & K. B. Singh), pp. 163–189.
Wallingford, UK: CAB International.

LINZ (1999). New Zealand Nautical Almanac. Wellington,
New Zealand: Land Information New Zealand.

MALHOTRA, R. S., SINGH, K. B. & SAXENA, M. C. (1997).
Effect of irrigation on winter-sown chickpea in a Medi-
terranean environment. Journal of Agronomy and Crop
Science 178, 237–243.

MCKENZIE, B. A. & HILL, G. D. (1989). Environmental
control of lentil (Lens culinaris) crop development.
Journal of Agricultural Science, Cambridge 113, 67–72.

MCKENZIE, B. A., HILL, G. D. & GALLAGHER, J. N. (1994).
A computer simulation model of lentil growth and devel-
opment. Lens Newsletter 21, 31–35.

RAMTEKE, S. D., CHETTI, M. B. & SALIMATH, P. M. (1996).
Heat unit requirement of chickpea genotypes for various

Phenology and growth response of chickpea 283



phenological stages during kharif and rabi seasons.
Annals of Plant Physiology 10, 176–181.

ROSS, G. J. S., HAWKINS, D., JONES, R. D., KEMPTON, R. A.,
LAUCKER, F. B., PAYNE, R. W. & WHITE, R. P. (1987).
MLP – Maximum Likelihood Programme. Harpenden,
UK: Rothamsted Experiment Station.

SAXENA, M. C., SILIM, S. N. & SINGH, K. B. (1990). Effect of
supplementary irrigation during reproductive growth on
winter and spring chickpea (Cicer arietinum) in a Medi-
terranean environment. Journal of Agricultural Science,
Cambridge 114, 285–293.

SIDDIQUE, K. H. M., LOSS, S. P., REGAN, K. L. & JETTNER,
R. L. (1999). Adaptation and seed yield of cool season
grain legumes in Mediterranean environments of south-
western Australia. Australian Journal of Agricultural
Research 50, 375–387.

SINGH, P. (1991). Influence of water deficits on phenology,
growth and dry matter allocation in chickpea (Cicer
arietinum). Field Crops Research 28, 1–15.

SOLTANI, A., GHASSEMI-GOLEZANI, K., KHOOIE, F. R. &
MOGHADDAM, M. (1999). A simple model for chickpea
growth and yield. Field Crops Research 62, 213–224.

SUMMERFIELD, R. J. & ROBERTS, E. H. (1988). Photothermal
regulation of flowering in pea, lentil, faba bean and
chickpea. In World Crops: Cool Season Food Legumes
(Ed. R. J. Summerfield), pp. 911–922. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

SUMMERFIELD, R. J., VIRMANI, S. M., ROBERTS, E. H.&ELLIS,
R. H. (1990). Adaptation of chickpea to agroclimatic
constraints. In Chickpea in the Nineties: Proceedings of
the 2nd International Workshop on Chickpea Improvement
(Eds B. J. Walby & S. D. Hall), pp. 61–72. Patancheru,
India: ICRISAT.

SUMMERFIELD, R. J., ROBERTS, E. H. & ELLIS, R. H. (1994).
Crop physiology and productivity in the cool season food
legumes: recent advances in the measurement and pre-
diction of photothermal effects on flowering. InExpanding
the Production and Use of Cool Season Food Legumes (Eds
F. J. Muehlbauer & W. J. Kaiser), pp. 755–770. Dor-
drecht, The Netherlands: Kluwer Academic Publishers.

ZHANG, H., PALA, M., OWEIS, T. & HARRIS, H. (2000). Water
use and water-use efficiency of chickpea and lentil in
a Mediterranean environment. Australian Journal of
Agricultural Research 51, 295–304.

284 M. RAJ IN ANWAR, B. A. MCKENZ IE AND G. D. H ILL


