6,714 research outputs found
Confinement-induced resonances for a two-component ultracold atom gas in arbitrary quasi-one-dimensional traps
We solve the two-particle s-wave scattering problem for ultracold atom gases
confined in arbitrary quasi-one-dimensional trapping potentials, allowing for
two different atom species. As a consequence, the center-of-mass and relative
degrees of freedom do not factorize. We derive bound-state solutions and obtain
the general scattering solution, which exhibits several resonances in the 1D
scattering length induced by the confinement. We apply our formalism to two
experimentally relevant cases: (i) interspecies scattering in a two-species
mixture, and (ii) the two-body problem for a single species in a non-parabolic
trap.Comment: 22 pages, 3 figure
Applying voltage sources to a Luttinger liquid with arbitrary transmission
The Landauer approach to transport in mesoscopic conductors has been
generalized to allow for strong electronic correlations in a single-channel
quantum wire. We describe in detail how to account for external voltage sources
in adiabatic contact with a quantum wire containing a backscatterer of
arbitrary strength. Assuming that the quantum wire is in the Luttinger liquid
state, voltage sources lead to radiative boundary conditions applied to the
displacement field employed in the bosonization scheme. We present the exact
solution of the transport problem for arbitrary backscattering strength at the
special Coulomb interaction parameter g=1/2.Comment: 9 pages REVTeX, incl 2 fig
Interaction-induced harmonic frequency mixing in quantum dots
We show that harmonic frequency mixing in quantum dots coupled to two leads
under the influence of time-dependent voltages of different frequency is
dominated by interaction effects. This offers a unique and direct spectroscopic
tool to access correlations, and holds promise for efficient frequency mixing
in nano-devices. Explicit results are provided for an Anderson dot and for a
molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let
Charge qubit entanglement in double quantum dots
We study entanglement of charge qubits in a vertical tunnel-coupled double
quantum dot containing two interacting electrons. Exact diagonalization is used
to compute the negativity characterizing entanglement. We find that
entanglement can be efficiently generated and controlled by sidegate voltages,
and describe how it can be detected. For large enough tunnel coupling, the
negativity shows a pronounced maximum at an intermediate interaction strength
within the Wigner molecule regime.Comment: revised version of the manuscript, as published in EPL, 7 pages, 4
figure
Electron injection in a nanotube with leads: finite frequency noise-correlations and anomalous charges
The non-equilibrium transport properties of a carbon nanotube which is
connected to Fermi liquid leads, where electrons are injected in the bulk, are
computed. A previous work which considered an infinite nanotube showed that the
zero frequency noise correlations, measured at opposite ends of the nanotube,
could be used to extract the anomalous charges of the chiral excitations which
propagate in the nanotube. Here, the presence of the leads have the effect that
such-noise cross-correlations vanish at zero frequency. Nevertheless,
information concerning the anomalous charges can be recovered when considering
the spectral density of noise correlations at finite frequencies, which is
computed perturbatively in the tunneling amplitude. The spectrum of the noise
cross-correlations is shown to depend crucially on the ratio of the time of
flight of quasiparticles traveling in the nanotube to the ``voltage'' time
which defines the width of the quasiparticle wave-packets injected when an
electron tunnels. Potential applications toward the measurement of such
anomalous charges in non-chiral Luttinger liquids (nanotubes or semiconductor
quantum wires) are discussed.Comment: 11 pages, 5 figure
Transport theory of carbon nanotube Y junctions
We describe a generalization of Landauer-B\"uttiker theory for networks of
interacting metallic carbon nanotubes. We start with symmetric starlike
junctions and then extend our approach to asymmetric systems. While the
symmetric case is solved in closed form, the asymmetric situation is treated by
a mix of perturbative and non-perturbative methods. For N>2 repulsively
interacting nanotubes, the only stable fixed point of the symmetric system
corresponds to an isolated node. Detailed results for both symmetric and
asymmetric systems are shown for N=3, corresponding to carbon nanotube Y
junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes,
15 pages, 3 figure
Coulomb drag shot noise in coupled Luttinger liquids
Coulomb drag shot noise has been studied theoretically for 1D interacting
electron systems, which are realized e.g. in single-wall nanotubes. We show
that under adiabatic coupling to external leads, the Coulomb drag shot noise of
two coupled or crossed nanotubes contains surprising effects, in particular a
complete locking of the shot noise in the tubes. In contrast to Coulomb drag of
the average current, the noise locking is based on a symmetry of the underlying
Hamiltonian and is not limited to asymptotically small energy scales.Comment: 4 pages Revtex, accepted for publication in PR
Parameter identification in a semilinear hyperbolic system
We consider the identification of a nonlinear friction law in a
one-dimensional damped wave equation from additional boundary measurements.
Well-posedness of the governing semilinear hyperbolic system is established via
semigroup theory and contraction arguments. We then investigte the inverse
problem of recovering the unknown nonlinear damping law from additional
boundary measurements of the pressure drop along the pipe. This coefficient
inverse problem is shown to be ill-posed and a variational regularization
method is considered for its stable solution. We prove existence of minimizers
for the Tikhonov functional and discuss the convergence of the regularized
solutions under an approximate source condition. The meaning of this condition
and some arguments for its validity are discussed in detail and numerical
results are presented for illustration of the theoretical findings
Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
The possibility to utilize different types of two-qubit gates on a single
quantum computing platform adds flexibility in the decomposition of quantum
algorithms. A larger hardware-native gate set may decrease the number of
required gates, provided that all gates are realized with high fidelity. Here,
we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a
parametrically driven tunable coupler that mediates the interaction between two
superconducting qubits. Using randomized benchmarking protocols we estimate an
error per gate of and fidelity for the CZ and the
iSWAP gate, respectively. We argue that spurious -type couplings are the
dominant error source for the iSWAP gate, and that phase stability of all
microwave drives is of utmost importance. Such differences in the achievable
fidelities for different two-qubit gates have to be taken into account when
mapping quantum algorithms to real hardware.Comment: 24 pages, including supplementary informatio
- …
