389 research outputs found

    Particle-gas dynamics in the protoplanetary nebula

    Get PDF
    In the past year we made significant progress in improving our fundamental understanding of the physics of particle-gas dynamics in the protoplanetary nebula. Having brought our code to a state of fairly robust functionality, we devoted significant effort to optimizing it for running long cases. We optimized the code for vectorization to the extent that it now runs eight times faster than before. The following subject areas are covered: physical improvements to the model; numerical results; Reynolds averaging of fluid equations; and modeling of turbulence and viscosity

    Inhomogeneous models of the Venus clouds containing sulfur

    Get PDF
    Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds

    The effect of the Coriolis force on Kelvin-Helmholtz-driven mixing in protoplanetary disks

    Full text link
    We study the stability of proto-planetary disks with vertical velocity gradients in their equilibrium rotation rates; such gradients are expected to develop when dust settles into the midplane. Using a linear stability analysis of a simple three-layer model, we show that the onset of instability occurs at a larger value of the Richardson number, and therefore for a thicker layer, when the effects of Coriolis forces are included. This analysis also shows that even-symmetry (midplane-crossing) modes develop faster than odd-symmetry ones. These conclusions are corroborated by a large number of nonlinear numerical simulations with two different parameterized prescriptions for the initial (continuous) dust distributions. Based on these numerical experiments, the Richardson number required for marginal stability is more than an order of magnitude larger than the traditional 1/4 value. The dominant modes that grow have horizontal wavelengths of several initial dust scale heights, and in nonlinear stages mix solids fairly homogeneously over a comparable vertical range. We conclude that gravitational instability may be more difficult to achieve than previously thought, and that the vertical distribution of matter within the dust layer is likely globally, rather than locally, determined.Comment: Accepted for publication in Ap

    Kinematics of solid particles in a turbulent protoplanetary disc

    Full text link
    We perform numerical simulations of solid particle motion in a shearing box model of a protoplanetary disc. The accretion flow is turbulent due to the action of the magnetorotational instability. Aerodynamic drag on the particles is modelled using the Epstein law with the gas velocity interpolated to the particle position. The effect of the magnetohydrodynamic turbulence on particle velocity dispersions is quantified for solids of different stopping times t_s, or equivalently, different sizes. The anisotropy of the turbulence is reflected upon the dispersions of the particle velocity components, with the radial component larger than both the azimuthal and vertical components for particles larger than ~ 10 cm (assuming minimum-mass solar nebula conditions at 5 AU). The dispersion of the particle velocity magnitude, as well as that of the radial and azimuthal components, as functions of stopping time, agree with previous analytical results for isotropic turbulence. The relative speed between pairs of particles with the same value of t_s decays faster with decreasing separation than in the case of solids with different stopping time. Correlations in the particle number density introduce a non-uniform spatial distribution of solids in the 10 to 100 cm size range. Any clump of particles is disrupted by the turbulence in less than one tenth on an orbital period, and the maximally concentrated clumps are stable against self-gravitational collapse.Comment: 11 pages, 9 figures. Accepted for publication in MNRA

    Length and Velocity Scales in Protoplanetary Disk Turbulence

    Full text link
    In the theory of protoplanetary disk turbulence, a widely adopted \emph{ansatz}, or assumption, is that the turnover frequency of the largest turbulent eddy, ΩL\Omega_L, is the local Keplerian frequency ΩK\Omega_K. In terms of the standard dimensionless Shakura-Sunyaev α\alpha parameter that quantifies turbulent viscosity or diffusivity, this assumption leads to characteristic length and velocity scales given respectively by αH\sqrt{\alpha}H and αc\sqrt{\alpha}c, in which HH and cc are the local gas scale height and sound speed. However, this assumption is not applicable in cases when turbulence is forced numerically or driven by some natural processes such as Vertical Shear Instability. Here we explore the more general case where ΩL≥ΩK\Omega_L\ge\Omega_K and show that under these conditions, the characteristic length and velocity scales are respectively α/R′H\sqrt{\alpha/R'}H and αR′c\sqrt{\alpha R'}c, where R′≡ΩL/ΩKR'\equiv \Omega_L/\Omega_K is twice the Rossby number. It follows that \alpha=\alphat/R', where \sqrt{\alphat} c is the root-mean-square average of the turbulent velocities. Properly allowing for this effect naturally explains the reduced particle scale heights produced in shearing box simulations of particles in forced turbulence, and may help with interpreting recent edge-on disk observations; more general implications for observations are also presented. For R′>1R'>1 the effective particle Stokes numbers are increased, which has implications for particle collision dynamics and growth, as well as for planetesimal formation.Comment: Accepted for publication in Ap

    A Numerical Turbulence Model for Multiphase Flows in the Protoplanetary Nebula

    Get PDF
    It is thought that planets form from solid particles in a flattened, rotating, 99% gaseous nebula. These grains gradually coagulate into millimeter-to-meter sized aggregates which settle toward the midplane of the nebula. It is widely believed that the resulting dense layer eventually becomes gravitationally unstable and collapses into 'planetesimals.' A new numerical model is presented to simulate the predominant processes (gravitation, vertical convection, and shear-driven turbulence) during the stage while the particulate material is still dispersed about the midplane of the nebula. In our previous work, particles were assumed to be spheres of a single radius; in the present work, particles are spheres of different radii. Results indicate that neither a broad nor a narrow distribution of particle sizes is likely to become gravitationally unstable

    Co-Accretion of Chondrules and Dust in the Solar Nebula

    Full text link
    We present a mechanism for chondrules to stick together by means of compaction of a porous dust rim they sweep up as they move through the dusty nebula gas. It is shown that dust aggregates formed out of micron-sized grains stick to chondrules, forming a porous dust rim. When chondrules collide, this dust can be compacted by means of rolling motions within the porous dust layer. This mechanism dissipates the collisional energy, compacting the rim and allowing chondrules to stick. The structure of the obtained chondrule-dust agglomerates (referred to as compounds) then consists of three phases: chondrules, porous dust, and dust that has been compacted by collisions. Subsequently, these compounds accrete their own dust and collide with other compounds. The evolution of the compound size distribution and the relative importance of the phases is calculated by a Monte Carlo code. Growth ends, and a simulation is terminated when all the dust in the compounds has been compacted. Numerous runs are performed, reflecting the uncertainty in the physical conditions at the chondrule formation time. It is found that compounds can grow by 1-2 orders of magnitudes in radius, upto dm-sizes when turbulence levels are low. However, relative velocities associated with radial drift form a barrier for further growth. Earlier findings that the dust sweep-up by chondrules is proportional to their sizes are confirmed. We contrast two scenarios regarding how this dust evolved further towards the densely packed rims seen in chondrites.Comment: 23 pages, accepted for publication in Ap
    • …
    corecore