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In the past year we have made significant progress in improving our fundamental under-

standing of the physics of this problem, as detailed below. Furthermore, having brought our

code to a state of fairly robust functionality, we devoted significant effort to optimizing it for

running long cases. We optimized the code for vectorization to the extent that it now runs

eight times faster than before (a typical case used to take a substantial fraction of a Cray 2

hour to run to convergence).

Physical improvements to the model

In starting to model very dense particle layers, when the particle mass density can exceed

100 times the local gas mass density, we realized that in such regions, the viscosity arising

from interparticle collisions may become comparable to, or even exceed, the turbulent gas

viscosity, and began to explore realistic implementations of particle viscosity vp. One simple

parametrization of vp is the particle viscosity routinely used in planetary rings which are not
overly optically thick (e.g. Goldreich and Tremaine 1978, Wisdom and Tremaine 1988):

vp-" "2_'1 -kf2' (1)

where vp is the average particle random velocity, f_ is the orbital frequency, and f is the vertically
integrated particle area filling factor or optical depth. The trick is to estimate vp. A simple

ring-type assumption such as vp - N6, where 6 is the particle layer thickness, is inappropriate
in this case since global particle motions on the scales 6 and f_ may be driven by turbulent

eddies without nearby particles having much relative velocity at all if they are sufficiently well

coupled to the local gas velocity.

We have come up with a simple model for vp based on the particle stopping time tp, which

determines the Schmidt number Sc.The model begins with the scaling relationships

vp_<v><l>_<_>< l>2_<v>2/<0_>, (2)

where < v >, < l >, and < w > are the characteristic relative velocity, length scale, and collision

frequency of the particles respectively• There are two regimes of interest• If the collision time

and length scales are not limited by the global scales of the system (layer thickness 6 and orbital

frequency f_), then _ _ nTcr2vr,l ,,_ vrd/l*, where l* is the mean free path between collisions.

From the work of V61k et al (1980), we identify vret as a fraction _/tp/tg _< 1 of the global

average particle random velocity vp when tp _<t0, where tp is the particle stopping time and t 0

is the eddy turnover time. Naturally, v_et can never exceed vv, and we account for this in the

limit tv >> to. We also note from our Schmidt number model (cf. also V61k et al 1980) that

(vo/vp) 2 = Sc = (1 + tp/to) , or vv ,_ vgSc-½. Consequently, vp = l*vret = l*vvJr(Sc), where

x/_- I 1
if tp < tg, and Y(Sc)-_r'_-- if tp > tg. (3)

v_e
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Note that this implies the particle viscositygoes to zero for very small tp regardless of the

particle density. This is because the particles are all trapped to the same local gas velocity and

have no relative random velocity at all.

In another limit, if the scales of the system limit the collision frequency or mean free path

(as in, for instance, optically thin planetary ring systems), up _ f < v >_ l > or with the same

assumptions as above, vp = fvt/Sc where vt is the turbulent gas viscosity.

We have implemented viscous terms in our numerical code using these parametrizations of

up. For the cases we have been studying (30 - 100 cm radius particles, 1 and 10 AU, minimum

mass solar nebula) the particle optical depth f is on the order of 0.1 and the Schmidt number

is on the order of unity; consequently the particle viscosity is about 10% of the gas turbulent

viscosity.
Numerical results

Using the newly vectorized code, we ran several models which included particle viscosity
terms both at 1 AU and at 10 AU. The code is well behaved in both limits. The results differ

from previous runs in that mean radial and azimuthal velocities in the particle layer are now

more slowly varying with vertical distance from the midplane due to the increased coupling by

particle viscosity.
Reynolds averaging of fluid equations

One aspect of our model that we wanted to put on firmer ground is our mixed use of Favre

(mass) averaging for the momentum equations with R_ynolds (time) averaging for the particle

conservation equation. It is the Reynolds averaging that results in the diffusion term we use

to model particle layer diffusion, whereas similar terms are suppressed in the Favre averaged

equations. Feeling that this was rigorously inconsistent and perhaps even quantitatively im-

portant, we have devoted considerable effort to rewriting the momentum equations from the

Reynolds-average standpoint. At this time we have obtained the new correlation terms but not

as yet coded them up. They are all tractable and can be modeled in very much the same way as

the gas eddy viscosity is always derived as a model of the Reynolds stresses, and heat transport

and particle diffusion by convection are modeled with the gradient diffusion hypothesis (using

the Prandtl and Schmidt numbers respectively). The terms are small, and we expect them to

change our numerical results in minor but potentially very interesting ways.

Modeling of turbulence and viscosity
In our prior work, we have explored two independent parametrizations of the nebula turbu-

lence, of differing complexity. In Champney and Cuzzi (1990), we pointed out the poorer than

desirable agreement between the eddy viscosity as determined from the two-equation (k - _)

model and that obtained with our current Prandtl model, which is characterized by only one

parameter (the critical Reynolds number). Since the two-equation model is partly ad hoc and

contains at least five constants, we have chosen so far to use the simpler Prandtl model. How-

ever, as we pointed out last year, not even the Prandtl model is without its uncertainties. The

critical Reynolds number Re* (Champney and Cuzzi 1990, equation 49) depends on the nature

of the flow regime. Heretofore we have used a value of 500 for Re*, but now believe that the

true value of Re* is about 100. Use of this number brings the two-equation and Prandtl models

into agreement.

However, the Prandtl technique cannot model the damping of turbulence by the particle

phase (Sproull 1961, Elghobashi and Abou-Arab 1973, Pourahmadi and Humphrey 1983); this

may be very important not only in the shear layer, but also in earlier phases of the nebula
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when particle settling and accretion occurs in the presence of widespread convective turbulence.

Consequently we are delving more deeply into self-consistent turbulence models.

The two-equation models currently in use (e.g. Rodi 1984) postulate one eqnatlnn for the

generation, transport, and damping of the turbulent kinetic energy k, and a similar equation

for the energy dissipation rate _. We have verified that the k-equation (including its particle

damping terms) is derivable in a straightforward way from the basic fluid equations, while as

far as we can determine, the _-equation is a relatively ad hoc creation designed to improve fits

to data. In fact, prior to the current widespread use of k - _ models, use of only the k-equation

was standard (Rodi 1984). We find that the dissipation rates _ calculated with our two-equation

model are approximated by k/tg, where the eddy turnover time ta is simply the inverse of the

orbital frequency. In the coming year, we plan to replace the _-equation entirely by the simple

scaling _ -- k/tg in the k-equation, simplifying the method to a one-equation model. This will

expedite the study of turbulence in the shear layer, including particle damping.
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